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A. Theoretical Motivation for Offering an AUD

A.1. Foreclosure and Optimal Assortments: A Motivating Example

We define the difference in payoffs between two assortments as ∆π(a, a′) = π(a)−π(a′). We

introduce the possibility that the dominant firm M offers the retailer a lump sum transfer T

in exchange for switching from assortment a′ to assortment a. For this to be an equilibrium

the following necessary conditions must be met:

∆πR + T ≥ 0 (Retailer IR)

∆πM − T ≥ 0 (Mars IR)

The retailer must prefer to receive the rebate under assortment a than to not receive the

rebate under assortment a′. Meanwhile the dominant firm must prefer to pay the rebate

under assortment a over not paying the rebate under assortment a′. For a to represent an

equilibrium assortment, it must also be the case that no player has an incentive to deviate,

including the rival firm H. Were H to offer its own transfer Th in exchange for the retailer

choosing assortment a′ instead of a this becomes the opposite of the Mars IR constraint:

∆πH + Th ≤ 0 (Hershey Deviation)
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We can consider the ‘bidding for representation’ argument of Bernheim and Whinston (1998),

where each transfer is set at the maximum amount so that Th = −∆πH and T = ∆πM in

order to see whose transfer persuades the retailer:

πR(a) + T ≥ πR(a′) + Th

∆πR + ∆πM ≥ −∆πH

∆πR + ∆πM + ∆πH ≥ 0 (Three-Party Surplus)

This tells us if the three conditions are satisfied (Retailer IR, Mars IR, and Three-Party

Surplus) then some transfer T (conditioned on assortment a) makes a an equilibrium when

the no-transfer equilibrium is a′. In the subsequent section we show how the AUD contract

allows the dominant firm to design the rebate threshold πM to pay the transfer conditional

on particular assortments a.1

We show how to adapt this setup to our empirical example. There are three potential

assortments for the last two products on the shelf, two Mars products (M,M), two Hershey’s

products (H,H), or the best of each (H,M). Each manufacturer earns higher profits when

more of their own products are stocked. Absent transfers, the retailer prefers to stock more

Hershey’s products and fewer Mars products. We assume that the profits of each agent can

be ordered as follows (this mimics the actual payoffs in our empirical example):

πR(H,H) >πR(H,M) > πR(M,M)

πH(H,H) >πH(H,M) > πH(M,M)

πM(M,M) >πM(H,M) > πM(H,H) (1)

Given the ordering of profits above, absent the rebate the retailer prefers the assortment

(H,H). Now we can consider decomposing profit differences into two steps. The first is the

difference between (H,H) and (H,M) which we call ∆H and the second is the difference

between (H,M) and (M,M) which we call ∆M so that ∆ = ∆H + ∆M represents the

difference between (H,H) and (H,M).

Conditions A a = (M,M) and a′ = (H,H). ∆πR + T ≥ 0 (IRR), ∆πM − T ≥ 0 (IRM)

and ∆πR + ∆πM + ∆πH ≥ 0 (3 Party).

Conditions B a = (M,H) and a′ = (H,H). ∆Hπ
R + T ≥ 0 (IRR), ∆Hπ

M − T ≥ 0 (IRM)

1We also show how it can be used to select effort levels e in accordance with the (IC) constraint of the
retailer.
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and ∆Hπ
R + ∆Hπ

M + ∆Hπ
H ≥ 0 (3 Party).

Conditions C a = (M,M) and a′ = (M,H). ∆Mπ
R+T ≥ 0 (IRR), ∆Mπ

M−T ≥ 0 (IRM)

but not necessarily the three-party surplus condition.

If conditions A hold then we have shown that there exists a transfer T such that (M,M)

is an equilibrium as no player possesses a profitable deviation. It is also the case that the

three-party surplus or industry profits πI = πM + πH + πR are higher under (M,M) than

(H,H) as ∆πI ≥ 0.

From conditions B we know that that ∆Hπ
I ≥ 0 or that the three-party surplus under

(H,M) is higher than that under (H,H).

It could be that ∆Mπ
I < 0 or that the (H,M) assortment rather than the (M,M) assort-

ment maximizes the three-party surplus. This does not contradict any of the other conditions.

The main takeaway is that M can set the transfer payments in order to obtain full

(M,M) or partial (H,M) foreclosure. We show that under (A), full foreclosure is feasible.

However, if (B), (C), and ∆Mπ
I < 0 also hold, full foreclosure does not lead to the assortment

that maximizes overall industry surplus. In this case, partial foreclosure maximizes industry

surplus, but full foreclosure leads to higher bilateral surplus among the retailer and dominant

firm. As long as the dominant firm chooses the transfers and conditions, full foreclosure will

be the equilibrium outcome.

The intuition behind this result relates to that of the Chicago Critique of Bork (1978) and

Posner (1976), which we interpret as asking “When foreclosure is obtained in equilibrium,

must the assortment necessarily be optimal?” Our answer is related to the work by Whinston

(1990) on tying. When the dominant firm is able to condition the transfer payment on the

(M,M) outcome, he can commit to tying the products together, and thus the equilibrium

assortment need not maximize the surplus of the entire industry.
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A.2. Effort Derivation

Consider the effort choice of the retailer faced with an AUD contract from (??):

max
(a,e)

π(a, e) =

πR(a, e) + λ · πM(a, e) if πM(a, e) ≥ πM

πR(a, e) if πM(a, e) < πM .

It is helpful to temporarily ignore the assortment choice a and focus on effort only. In the

case where the rebate is paid, we can express the retailer’s problem as:

e1 = arg max
e
πR(e) + λπM(e) s.t. πM(e) ≥ πM

The solution to the constrained problem is given by:

e1 = max{eR, e} where e solves πM(e) = πM

If the rebate is not paid then:

e0 = eNR = arg max
e
πR(e)

The retailer’s IC constraint:

πR(e1) + λπM(e1) ≥ πR(e0) (IC)

and the dominant firm M ’s IR constraint:

(1− λ)πM(e1) ≥ πM(e0) (IRM)

When we consider the sum of (IC) and (IRM) it is clear that a rebate which induces effort

level e1 must increase bilateral surplus relative to e0:

πR(e1) + πM(e1) ≥ πR(e0) + πM(e0)

This provides an upper bound on the effort that can be induced by the rebate contract.

Thus, for e ≥ eR, M can set the effort level of the retailer via the threshold πM , subject to

satisfying the retailer’s IR constraint. That is, the retailer must prefer to collect the rebate
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to their next best no rebate alternative (generally the (H,H) assortment).

A.3. Alternative Contracts

This section compares the AUD contract to other contractual forms; it is meant to be

expositional and does not present new theoretical results.

Quantity Discount

A discount τ , can be mapped into λ (a share of M ’s variable profit margin). However the

discount no longer applies to all qm, only those units in excess of the threshold, so that

ρ(πM) = max
{

0, π
M−πM
πM

}
. This implies T ≡ ρ(πM) · λ · πM , so that as the threshold

increases, M is limited in how much surplus it can transfer to R, assuming that the post-

discount wholesale price is non-negative. In the limiting case, the threshold binds exactly

and M cannot offer R any surplus. This makes the discount, rather than the threshold, the

primary tool for incentivizing effort. (Recall that for the AUD, e ≥ eR implies that M can

directly set the retailer’s effort). This means that high effort levels, e > eR, will be more ex-

pensive to the dominant firm under the quantity discount than under the AUD. In fact, the

vertically-integrated level of effort is only achievable through the ‘sell out’ discount, where

τ = wm − cm such that M earns no profit on the marginal unit, and some qm significantly

less than the vertically-integrated quantity.

Quantity Forcing Contract

The quantity forcing (QF) contract is similar to a special case of the AUD contract. Specify

a conventional AUD (wm, τ, qm) as:(pm − wm + τ) · qm if qm ≥ qm

(pm − wm) · qm if qm < qm

One can increase the wholesale price wm by one unit, and the generosity of the rebate (τ)

by one unit. Continuing with this procedure, the retailer profits when the threshold is met.

For any qm ≥ qm, the retailer’s profit remains unchanged, while its profit for any qm < qm,

tends to zero as wm → pm. This has the effect of ‘forcing’ the retailer to accept a quan-

tity at least as large as qm. By choosing the threshold, the QF contract can achieve the

vertically-integrated level of effort, just like the AUD. For quantities qm > qm, the AUD

works like a QF contract plus a uniform wholesale price on ‘extra’ units.2. Without some

2For a more complete discussion of the connection between the AUD and the QF contract in the presence
of a capacity constrained rival see Chao et al. (2018)
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outside constraint on τ or wm, and absent uncertainty about demand, the dominant firm

has an incentive to increase τ and wm together to replicate the QF contract.

Two-Part Tariff

One can also construct a two-part tariff (2PT), described by two terms: a share of M ’s

revenue λ and a fixed transfer T from R → M . The retailer chooses between the 2PT

contract and the standard wholesale price contract.πR(a, e) + λ · πM(a, e)− T if 2PT

πR(a, e) o.w.

We define πR = maxa,e π
R(a, e) (the retailer’s optimum under the standard wholesale price

contract). For the retailer to choose the 2PT contract it must be that maxa,e{πR(a, e) + λ ·
πM(a, e)−T} ≥ πR. An important case of the 2PT contract is the so-called ‘sellout’ contract

where λ = 1. In this case, the retailer maximizes the joint surplus of πR + πM and achieves

the vertically-integrated assortment and stocking level. Just like in the AUD, this may lead

to foreclosure of the rival H, even when that foreclosure is not optimal from an industry

perspective. The dominant firm can choose T so that maxa,e{πR(a, e) +πM(a, e)}−T = πM

and ‘fully extract’ the surplus from R. Likewise, the dominant firm can choose T = (1 −
λAUD) · πM (the dominant firm’s profits under the AUD) so long as the retailer is willing to

choose the 2PT contract.

This indicates that it is also possible for a 2PT contract to implement the assortment

and effort level that maximizes the bilateral profit between M +R, even if that assortment

does not maximize overall industry profits. An important question is: how do the AUD and

the 2PT differ? One possibility is that the AUD can be used to implement an effort level in

excess of the vertically-integrated optimal effort, eV I , which results in higher profits for M

at the expense of the retailer. A major challenge of devising a 2PT in practice is arriving

at the fixed fee T , especially when there are multiple retail firms of different sizes, and the

2PT contract (or menu of contracts) is required to be non-discriminatory.3 It may be easier

in practice to tailor sales thresholds to the size of individual retailers (as opposed to setting

individual fixed-fee transfer payments).4

3Kolay et al. (2004) shows that a menu of AUD contracts may be a more effective tool in price discrim-
inating across retailers than a menu of 2PTs. In the absence of uncertainty, an individually-tailored 2PT
enables full extraction by M , but is a likely violation of the Robinson-Patman Act.

4Another possibility as shown by O’Brien (2013) is that the AUD contract can enhance efficiency under the
double moral-hazard problem (when the upstream firm also needs to provide costly effort such as advertising).
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B. Econometric Appendix

B.1. Additional Descriptive Figures

We provide alternative version of the descriptive figures in the text to illustrate how our

experimental sample of machines that we use to estimate demand is similar (and different)

from the overall enterprise of MarkVend. In all of these figures the unit observation is a

machine-visit, and we average across machine-visits both by month. Thus machines that are

visited more frequently are given more weight. We’ve also computed each of these figures

re-weighted based on monthly machine sales and we obtain nearly identical results.

In Figure A1, we show the overall number of product facings in confections is relatively

stable over time, but differs between our experimental sample of machines in white-collar

office locations and MarkVend’s wider enterprise which also includes some larger machines

with more product facings in schools, museums, parks, etc. We should also note that if one

considered an ‘unbalanced’ panel of MarkVend’s entire enterprise, the number of product

facings would appear to decline over time as the relative share of smaller office located

machines grew relative to the share of larger machines.

In Figure A2, we reproduce the upper panel of Figure 2 from the main text for both the

‘balanced’ panel of 364 machines and our smaller experimental sample in office locations.

In both cases, there is a pronounced shift around the beginning of 2008 when we believe

that Mars changes the rebate threshold. Around the time the threshold changes, MarkVend

replaces Chocolate Mars products with Chocolate Hershey products. This change takes place

in both samples.

To further illuminate which product facings change over time we then produce Figure A3.

Here we show that there are a set of base Mars products which are highly available in both

samples, and don’t vary much over time (Snickers, Peanut M&M’s, Twix). We aggregate

the two non-chocolate confections (Skittles and Starburst) as MarkVend tends to alternate

machines (each machine stocks either Skittles or Starburst). A small number of machines

(mostly in schools) stock both Skittles and Starburst, which explains why more than once

facing is reported for the combined product.

Finally we reproduce the lower panel of Figure 2 from the main text in Figure A4. Again,

the top pane is for a ‘balanced’ panel of 364 machines, while the bottom panel is for the

66 machines we use to conduct our experiments and estimate our demand model. Here

we show the set of ‘non base’ product for each manufacturer. These are the products we

generally view as competing for the final slots in the vending machine. The main takeaway is
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that when Mars reduces the threshold in 2008, MarkVend substitutes the worst performing

Mars chocolate product (3 Musketeers) for the best performing Hershey product (Reese’s

Peanut Butter Cup). There are some other important differences between the two samples,

the broader sample tends to include M&M Plain in roughly 80% of machines while our

experimental sample includes it only 40%. The broader sample includes Sour Patch Kids

(Hershey) in around half of machines, though they are almost never available in our office

sample. Meanwhile the experimental sample stocks Raisinets (Nestle) in around 80% of

machines as compared with 50% of the broader sample. We think these can largely be

explained by differences in demand patterns between white collar office workers (Raisinets)

and school-aged children (Sour Patch Kids), as well as the larger overall machines in the

schools and museums.

Figure A1: Product Facings by Category
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Notes: An observation is a machine-visit pair. Figure reports average product facings of confection products across machine-
visits by month and product category for two sets of machines: a balanced panel of 364 MarkVend vending machines, as the
set of 66 vending machines used in for our experimental product removals. Blue lines report chocolate confection products; red
lines report non-chocolate confection products.
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Figure A2: Product Facings by Manufacturer and Category

Jan
2007

Jan
2008

Jan
2009

Apr Jul Oct Apr Jul Oct0

1

2

3

4

5

P
ro

du
ct

 F
ac

in
gs

Chocolate|Mars
Chocolate|Hershey
Chocolate|Nestle

NonChocolate|Mars
NonChocolate|Hershey

Jan
2007

Jan
2008

Jan
2009

Apr Jul Oct Apr Jul Oct0

1

2

3

4

5

P
ro

du
ct

 F
ac

in
gs

Chocolate|Mars
Chocolate|Hershey
Chocolate|Nestle

NonChocolate|Mars
NonChocolate|Hershey

Notes: An observation is a machine-visit pair. Figure reports average product facings of confection products across machine-
visits by month, product category, and manufacturer for two sets of machines: a balanced panel of 364 MarkVend machines
(top pane), and the set of 66 machines used in for our experimental product removals (bottom pane).9



Figure A3: Product Facings for Commonly Stocked (Base) Assortment
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Notes: An observation is a machine-visit pair. Figure reports average product facings of products commonly included in
MarkVend’s base assortment across machine-visits by month for two sets of machines: a balanced panel of 364 MarkVend
vending machines, as the set of 66 vending machines used in for our experimental product removals.
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Figure A4: Product Facings for Marginal Products

Jan
2007

Jan
2008

Jan
2009

Apr Jul Oct Apr Jul Oct
0.0

0.2

0.4

0.6

0.8

1.0
Exclusionary Period (M,M) Non-Exclusionary Period (H,M)

M&M
Milky Way
3-Musketeers

Reeses PB Cup
Payday

Raisinets
Butterfinger

Jan
2007

Jan
2008

Jan
2009

Apr Jul Oct Apr Jul Oct
0.0

0.2

0.4

0.6

0.8

1.0
Exclusionary Period (M,M) Non-Exclusionary Period (H,M)

M&M
Milky Way
3-Musketeers

Reeses PB Cup
Payday

Raisinets
Butterfinger

Notes: An observation is a machine-visit pair. Figure reports average product facings of marginal products in MarkVend’s base
assortment across machine-visits by month for two sets of machines: a balanced panel of 364 MarkVend vending machines, as
the set of 66 vending machines used in for our experimental product removals.
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B.2. Computing Treatment Effects

One goal of the exogenous product removals is to determine how product-level sales respond

to changes in availability. Let qjt denote the sales of product j in machine-week t, superscript

1 denote sales when a focal product(s) is removed, and superscript 0 denote sales when a

focal product(s) is available. Let the set of available products be A, and let F be the set of

products we remove. Thus, Q1
t =

∑
j∈A\F q

1
jt and Q0

s =
∑

j∈A q
0
js are the overall sales during

treatment week t, and control week s respectively, and q0
fs =

∑
j∈F q

0
js is the sales of the

removed products during control week s. Our goal is to compute ∆qjt = q1
jt − E[q0

jt], the

treatment effect of removing products(s) F on the sales of product j.

There are two challenges in implementing the removals and interpreting the data gen-

erated by them. The first challenge is that there is a large amount of variation in overall

sales at the weekly level, independent of our exogenous removals. For example, a law firm

may have a large case going to trial in a given month, and vend levels will increase at the

firm during that period. In our particular setting, many of the product removals were done

during the summer of 2007, which was a high-point in demand at these sites, most likely

due to macroeconomic conditions. In this case, using a simple measure like previous weeks’

sales, or overall average sales for E[q0
jt] could result in unreasonable treatment effects, such

as sales increasing due to product removals, or sales decreasing by more than the sales of

the focal products.

In order to deal with this challenge, we impose two simple restrictions based on consumer

theory. Our first restriction is that our experimental product removals should not increase

overall demand, so that Q0
t −Q1

s ≥ 0 for treatment week t and control week s. Our second

restriction is that the product removal(s) should not reduce overall demand by more than

the sales of the products we removed, or Q0
t −Q1

s ≤ q0
fs. This means we choose control weeks

s that correspond to treatment week t as follows:

{s : s 6= t, Q0
t −Q1

s ∈ [0, q0
fs]}. (2)

While this has the nice property that it imposes the restriction on our selection of control

weeks that all products are weak substitutes, it has the disadvantage that it introduces the

potential for selection bias. The bias results from the fact that weeks with unusually high

sales of the focal product q0
fs are more likely to be included in our control. This bias would

likely overstate the costs of the product removal, which would be problematic for our study.

12



We propose a slight modification of ((2)) which removes the bias. That is, we replace q0
fs

with q̂0
fs = E[q0

fs|Q0
s]. An easy way to obtain the expectation is to run an OLS regression

of q0
fs on Q0

s, at the machine level, and use the predicted value. This has the nice property

that the error is orthogonal to Q0
s, which ensures that our choice of weeks is unbiased.

The second challenge is that, although the experimental design is relatively clean, the

product mix presented in a machine is not necessarily fixed across machines, or within a

machine over long periods of time, because we rely on observational data for the control

weeks. For example, manufacturers may change their product lines, or Mark Vend may

change its stocking decisions over time. Thus, while our field experiment intends to isolate

the treatment effect of removing Snickers, we might instead compute the treatment effect of

removing Snickers jointly with Mark Vend changing pretzel suppliers.

To mitigate this issue, we restrict our set of potential control weeks to those at the same

machine with similar product availability within the category of our experiment. In practice,

two of our three treatments took place during weeks where 3 Musketeers and Reese’s Peanut

Butter Cups were unavailable, so we restrict our set of potential control weeks for those

experiments to weeks where those products were also unavailable. We denote this condition

as As ≈ At.

We use our definition of control weeks s to compute the expected control sales that

correspond to treatment week t as:

St = {s : s 6= t, At ≈ As, Q
0
t −Q1

s ∈ [0, b̂0 + b̂1Q
0
s]}. (3)

And for each treatment week t we can compute the treatment effect as

∆qjt = q1
jt −

1

#St

∑
s∈St

q0
js. (4)

While this approach has the advantage that it generates substitution patterns consistent

with consumer theory, it may be the case that for some treatment weeks t the set of pos-

sible control weeks St = {∅}. Under this definition of the control, some treatment weeks

constitute ‘outliers’ and are excluded from the analysis. Of the 1470 machine-experiment-

week combinations, 991 of them have at least one corresponding control week, and at the

machine-experiment level, 528 out of 634 have at least one corresponding control. Each

included treatment week has an average of 24 corresponding control weeks, though this can
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vary considerably from treatment week to treatment week.5

Once we have constructed our restricted set of treatment weeks and the set of control

weeks that corresponds to each, inference is fairly straightforward. We use ((4)) to construct

a set of pseudo-observations for the difference, and employ a paired t-test.

B.3. Estimation Algorithm

Here we provide pseudocode of our entire procedure for calculating π(a, e). The first and

third algorithm need to be repeated for each bootstrapped draw from the asymptotic distri-

bution of (d̂j, σ̂).

The computational ‘trick’ is to re-normalize the choice probabilities in Algorithm 1 steps

1(c-e). The normalization implicitly conditions on the set of customers who would have

made a purchase at some hypothetical machine containing a superset of products A0 =

At ∪ {(H,H), (H,M), (M,M)}. This can be justified in stages: the first stage is a draw

from a binomial distribution where a consumer arrives and either selects the outside good

or is labeled a ‘likely consumer.’ Likely consumers then face a second stage described by

our re-normalized multinomial distribution where they choose either an available product

or choose the outside good with a much smaller probability than the overall demand model

s0(At)− s̃0(A0). This saves time because we don’t need to simulate the arrivals of consumers

who never make a purchase. If the outside good share were 90% this would represent an

order of magnitude reduction in the state space we ultimately need to keep track of as well as

the number of consumer arrivals we need to simulate. This also makes the choice of ξt largely

irrelevant as it governs the market share of the outside good and that gets normalized away.

A larger ξt still increases the substitution probability to the outside option after products

stock out. We calibrate this to ξ = med(ξt) ≈ 0.75.6

If we were to increase ξt, this would decrease the share of the outside good and increase

sales for any fixed number of consumers. However, because in Algorithm 2 we also estimate

the arrival rate of consumers P (x + ∆xk|x) in the normalized state-space, what happens

instead is that as ξt increases we estimate a slower arrival process so that P is chosen to

match the average daily sales observed in the top quartile of all machines across the entire

MarkVend enterprise. We could have worked with the entire distribution of all machines, but

5Weeks in which the other five treatments were run (for the salty-snack and cookie categories) are excluded
from the set of potential control weeks.

6We use the median because the distribution is highly skewed. We have also tried ξ = E[ξt] = 0, which
gives nearly identical results. The optimal policies change by at most one unit.
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we focus on this top quartile because we believe those machines drive restocking decisions –

many of the slower machines are restocked because the driver is already nearby. A separate

question is: “What is the point of ξt in the model?” and the answer is that we incorporate

ξt in order to get unbiased estimates of d̂j and σ̂.
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Algorithm 1 Simulate Payoffs

1. Simulate consumer purchases from a full vending machine under assortment a.

(a) Set ξ = med[ξ̂t] ≈ 0.75.

(b) Initialize inventory of 15 confections products per slot for a ∈ {(H,H), (H,M), (M,M)} plus
products listed in table 8 (at modal max inventory). Label this inventory/assortment A0(a).

(c) Use observed random coefficients demand parameters (d̂j , σ̂) and quadrature nodes (wi, νi) to
calculate outside good purchase probability at an unobserved machine containing a superset of
all possible products: Ã = A0 ∪ {(H,H), (H,M), (M,M)}.

s0 =

NS∑
i=1

wi
e−ξ

exp−ξ +
∑
k∈Ã e

d̂k+
∑

l σ̂lνilxkl

(d) Use observed random coefficients demand parameters (d̂j , σ̂) and quadrature nodes (wi, νi) to
calculate purchase probabilities of a single consumer for current inventory/assortment At:

sj(As) =

NS∑
i=1

wi
ed̂j+

∑
l σ̂lνilxjl

exp−ξ +
∑
k∈As

ed̂k+
∑

l σ̂lνilxkl

(e) Draw a single consumer purchase as y∗t , a (J + 1) vector with re-normalized outside good
probability.

y∗s ∼Multinom

(
sj(As)

1− s0
, s0(As)− s0

)
(f) Update As+1 = As − y∗s or As+1 = As if outside good is chosen.

(g) Continue for s = 1, . . . , 800 consumers or (until machine is empty As = ∅).
(h) Repeat for n = 1, . . . N = 100 000 machines to construct yn,s: a (J + 1) vector.

2. Smooth Expected Flow Payoffs

(a) Load retail and wholesale prices for all products. Assume mc = 0.15 for all confections.

(b) Compute the expected flow payoffs for each agent as a function of cumulative arrivals x:

uR(x, a) =
1

N

N∑
n=1

x∑
s=1

y∗n,s · (pr − w)

uM (x, a) =
1

N

N∑
n=1

x∑
s=1

y∗n,s · Int[Mars] · (wm −mc)

uH(x, a) =
1

N

N∑
n=1

x∑
s=1

y∗n,s · Int[Hershey] · (wm −mc)

uC(x, a) =
1

N

N∑
n=1

x∑
s=1

log

1 +
∑
j∈As

exp

[
δ̂k + ξ̂ +

∑
l

σ̂lνilxkl

]
(c) Smooth the expected profits

(
uR(x, a), uM (x, a), uH(x, a), uC(x, a)

)
→(

ûR(x, a), ûM (x, a), ûH(x, a), ûC(x, a)
)

using MATLAB slmegine. Verify/require mono-
tonicity for (R,M,C) but not (H,N). 16



Algorithm 2 Estimate the Arrival Rate

1. As in Algorithm 1 (Part 2) construct an estimate of total sales as a function of ‘likely consumers’

usales(x, a) =
1

N

N∑
n=1

x∑
s=1

J∑
j=1

y∗n,s

2. For each visit in the data, measure the total sales Qt since the previous service visit and calculate the
fewest number of elapsed consumers x required to realize Qt sales:

x̂t = {minx : usales(x, a) > Qt}

3. Denote the number of elapsed (business) days since the previous service visit as dayst and define

∆xt =
(

x̂t

dayst

)
as the average number of consumer arrivals per day for each visit t.

4. Construct a nonparametric frequency estimator for ∆xt:

P (∆xt) =
1

T

T∑
t=1

1 [bk < ∆xt ≤ bk+1]

17



Algorithm 3 Solve the Dynamic Programming Problem

There exists a monotone policy such that the agent re-stocks if x ≥ e:

1. Assume a known discount factor β and a fixed cost FC = 10.

2. Given a guess of the optimal policy, we can compute the post-decision pay-off ũ:

ũ(x, a, e) =

{
0 if x < e

û(x, a)− FC if x ≥ e.

3. Compute the post-decision transition matrix P̃ by replacing columns of P .

P̃ (x, e) =

{
x+ ∆x if x < e

∆x if x ≥ e.

4. This allows us to solve the value function at all states in a single step:

V (x, a, e) = (I − βP̃ (e))−1ũ(x, a, e).

5. Find the ergodic/stationary distribution of x under policy e as the vector Γ(e) that solves:

Γ(e) = Γ(e)P̃ (x, e) with
∑

Γ(e) = 1.

6. Compute long-run expected profits under the Markov Chain using the stationary distribution:

π(a, e) = Γ(e)V (x, a, e)

7. Repeat this exercise for all possible choices of (a, e) and all agents R,M,H,N,C. Enumerate over e
to find the optimal policy for each agent(s) (NR,R, V I, IND, SOC).
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Algorithm 4 Compute the Standard Errors

1. Draw θ̂b ∼ N
(
θ̂MLE ,

√
diag(V (θ̂MLE)

)
. We only need: (d̂j , σ̂). Assume ξ = 0.75 as before.

2. Simulate consumer arrivals and payoffs using Algorithm 1 û(x, a, θ̂b) for each agent.

3. Use the same estimated consumer arrival process/ transition matrix P̂ from Algorithm 2.

4. Use same calibrated discount factor β and same calibrated restocking cost FC = 10 and solve the
dynamic programming problem using Algorithm 3.

5. Use π∗(a, e|θ̂b) to calculate the optimal policies for different groups of agents (eNR, eR, eV I , eSOC) for
every (a, e) pair.

6. Compute all of the profit differences ∆πR,∆πM ,∆πH .

7. Repeat 1000 times and report the standard deviations.

In this procedure there are two sources of variation. The first is the variation introduced by the uncertainty
in the simulated ML estimates of the demand parameters (as reported in table ??). The second is the
simulation variance introduced from our simulation procedure, because we use the average over 100,000
chains this is designed to be at most ±$2.

B.4. Consumer Surplus and Welfare Calculations

Our calculation of the expected consumer surplus of a particular assortment and effort policy

(a, e) parallels our calculation of retailer profits. We simulate consumer arrivals over many

chains, and compute the set of available products as a function of the initial assortment a

and the number of consumers to arrive since the previous restocking visit x which we write

a(x). For each assortment a(x) that a consumer faces, we can compute the logit inclusive

value and average over our simulations, to obtain an estimate at each x:

CS∗(a, x|θ) =
1

It

It∑
i=1

log

 ∑
j∈a(xs)

exp[δj + µij(θ)]


The exogenous arrival rate, P (x′|x), denotes the expected daily number of consumer arrivals

(from x cumulative likely consumers today to x′ cumulative likely consumers tomorrow).

Using this arrival rate and a policy e, we obtain the post-decision transition rule P̃ (x, e) and

evaluate the ergodic distribution of consumer surplus under policy e:

CS∗(a, e) = [I − βP̃ (x, e)]−1CS∗(a, x|θ)
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The remaining challenge is that CS∗(a, e) relates to arbitrary units of consumer utility, rather

than dollars. Recall our utility specification from Equation (1) in Section 4 of the main text,

with θ = [δ, α, σ]:

uijt(θ) = δj + αpjt + ξt +
∑
l

σlνiltxjl + εijt

Without observable, within-product variation in price, pjt = pj, and α is not separately

identified from the product fixed-effect δj. If α were identified, then we could simply write

CS(a, e) = 1
α
CS∗(a, e). Instead, we can calibrate α given an own price elasticity:

εj,t =
pjt
sjt
· ∂sjt
∂pjt

=
pjt
sjt
·
∫
∂sijt
∂pjt

f(βi|θ)d βi = α · pjt
sjt
·
∫

(1− sij(δ, βi)) · sij(δ, βi)f(βi|θ)d βi︸ ︷︷ ︸
ε∗j,t(θ)

The term ε∗j,t does not depend directly on α once we have controlled for the fixed effect dj.

Thus, we can calibrate own-price elasticities. As is conventional in the literature, we work

with the median own-price elasticity, ε(θ) = medianj(ε
∗
j,t(θ)), and recover α as α = | ε

ε(θ)
|.

We then calculate α at three different values of ε: ε ∈ {−1,−2,−4}.
As is well known, α has an alternative interpretation in the social planner’s problem as

the planner’s weight on consumer surplus:

SS(a, e) = PS(a, e) +
γ

|α|
CS∗(a, e)

The social planner’s problem is equivalent in the following cases: (1) the median own-price

elasticity is ε = −2 and γ = 1; (2) the median own-price elasticity is ε = −4 and the planner

puts twice as much weight on consumer surplus γ = 2; (3) the median own-price elasticity

is ε = −1 and the planner puts half as much weight on consumer surplus γ = 1
2
.
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C. Robustness Checks

For each of our robustness checks we change the parameters of the dynamic decision problem

and see if it changes the welfare implications of the AUD contract. To summarize these

results, we compare our alternative specifications to Table 13 from the main text. This allows

us to compare both foreclosure and efficiency effects at the same time. We focus on some key

outcomes, the first is the sign of the change in producer and consumer surplus for transitions

between (H,H) → (M,M) under different effort levels and from (H,M) → (M,M). In

nearly all of the robustness test we find results qualitatively similar to those in the main

text. First, both consumers and producers are better off under the (H,M) assortment than

the (M,M) assortment. Second, the overall impact on consumers is sometimes ambiguous

as they can be compensated for an inferior assortment with a higher effort level under eV I .

As in the main text this depends on the retailer setting a lower effort level eNR under the

(H,M) assortment. Third, Hershey would have to set a very low wholesale price (often

below our assumed 15 cent marginal cost) in order to avoid being foreclosed. Similarly, this

implies that Mars could only modestly reduce the generosity of the rebate (by 4-6%) without

Hershey being able to respond and avoid foreclosure.

We consider a broad array of alternatives: changing the arrival rate of consumers; setting

the marginal cost to zero and maximizing potential efficiencies; increasing or decreasing the

fixed cost of restocking; and having the retailer place some weight on consumer surplus when

making decisions.

C.1. Arrival Rate: Details and Robustness

We estimate the arrival rate P (∆xt) by grouping machines across the entire MarkVend enter-

prise into quartiles based on average daily sales for the entire sample. Our main specification

focuses on the top quartile of machines by this metric. As a robustness test, we also consider

the next 50% (25th to 75th percentile machines). For each machine-visit we calculate the

average daily sales and the total sales when the machine was restocked. The first metric

can be used to estimate P (∆xt) while the second metric can be thought of as an empiri-

cal estimate of the policy function e(·). Neither of these are strictly correct because some

consumers arrive at the machine and elect to purchase the outside option. However, in our

normalized state space xt represents the cumulative number of consumer arrivals since our

last restocking event, who would have purchased at a full machine. Thus the only gap arises

from consumers who would have purchased at a full machine but do not purchase because

of stockouts. For xt ≤ 300 consumer arrivals this implies an adjustment of ≤ 10% between

21



the policy in the space of realized sales and consumer arrivals in the model.

In Figure A5 we replicate Figure 4 from the main text above and below include the middle

50% of machines. We see that the arrival rate is substantially lower for the middle 50% of

machines (15.4 per day) than for the top 25% of machines (37.6 per day) as we might expect.

We also see that the empirical distribution of restocking policies for these machines is lower

(mean of e ≈ 130 versus mean of e ≈ 80). This does not imply that MarkVend services less

popular machines more frequently but rather they service less popular machines after fewer

consumer arrivals ; the confound is the lower arrival rate at these machines. A likely story is

that these machines have lower fixed costs to service (perhaps because the driver is already

on-site servicing a nearby machine, or because it takes less time to restock fewer products).

This is part of the reason we chose to focus on machines with above average consumer arrival

rates, because we believe those are more likely to drive MarkVend’s stocking decisions.

An important question is whether or results are sensitive to the arrival rate of consumers.

We reproduce the ‘net effects’ table (Table 13 from the main text) as Table A1 below. We

find that all of the qualitative results are the same: the rebate can be used to foreclose the

rival even though (H,M) generates more producer surplus than (M,M). Overall welfare

impacts are the same as in the main text. The (H,M) assortment maximizes producer

surplus and consumer surplus. It is possible that consumers receive sufficient benefits in

moving from eNR to eV I to compensate them for the inferior assortment (M,M), though eR

does not provide sufficient compensation.

Table A1: Net Effect of Efficiency and Foreclosure (Middle 50% of Machines)

from (H,M) and eNR (H,H) and eNR

to (M,M) and: eR eV I eSOC eR eV I eSOC

∆πR -304 -350 -570 -646 -692 -912

∆πM 1094 1174 1285 2362 2442 2553

∆πH -908 -908 -908 -1518 -1518 -1518

∆πN -4 -6 -7 -22 -24 -25

∆PS -123 -91 -201 176 207 97

∆CS(ε = −2) -22 153 406 222 398 650

∆SS -145 62 204 398 605 747

λπM 2321 2339 2364 2321 2339 2364

wh to avoid foreclosure -18.87 -18 -12.03 12.12 12.64 16.22

Reduced λ (Percent) 47.76 46.18 37.44 6.78 5.51 -2.81

Notes: Consumer Surplus calibrates α to median own price elasticity of ε = −2. Calibration only affects the scale of consumer

surplus calculations, not the ranking of various options. For more details see Appendix B.4.

We tried alternative assumptions on the arrival rate by either doubling or halving the
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Figure A5: Observed Policies and Arrival Rates
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Notes: Top row reports daily arrival rate for top 25% of machines at MarkVend’s overall enterprise. Bottom row reports daily
arrival rate for middle 50% of MarkVend’s machines. These are used to estimate f(∆xt). Right column reports cumulative
sales at restocking as well as calculated optimal policies from the model. Policies and cumulative sales are in the same units
except for ‘sales’ of the outside good.

rate at which customers arrive. Though we don’t report those results here, we didn’t find a

substantial effect on anything other than the absolute magnitude of profits.
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C.2. Robustness to Alternative Marginal Costs

We reproduce the ‘net effects’ as Table A2 where we set the marginal cost of production equal

to zero. The main difference is that manufacturer profits are larger in all scenarios. The gap

between the retailer optimal policy eR and the vertically integrated eV I or socially optimal

eSOC policy becomes larger. This can be viewed as a way to obtain an ‘upper bound’ on

potential efficiencies as now production is costless. We find that all of the qualitative results

and signs of point estimates are the same: the rebate can be used to foreclose the rival even

though (H,M) generates more producer surplus than (M,M). Hershey’s countermeasures

are similar to those we calculated in the main text. It would have to cut its wholesale price

below 15 cents to avoid foreclosure under both eR and eV I . Likewise, Mars could not reduce

the rebate by much and still foreclose Hershey: only 4% at the vertically-integrated effort

level and 6.6% at eR.

Overall, welfare impacts are the same as in the main text. The (H,M) assortment

maximizes producer surplus and consumer surplus. It is possible that consumers receive

sufficient benefit in moving from eNR to eV I to compensate them for the inferior assortment

(M,M), though eR, and does not provide sufficient compensation.

Table A2: Net Effect of Efficiency and Foreclosure (MC = 0)

from (H,M) and eNR (H,H) and eNR

to (M,M) and: eR eV I eSOC eR eV I eSOC

∆πR -733 -930 -1467 -1548 -1746 -2282

∆πM 3641 4009 4320 7868 8236 8547

∆πH -3361 -3361 -3361 -5614 -5614 -5614

∆πN -16 -23 -25 -82 -89 -91

∆PS -469 -306 -533 624 787 560

∆CS(ε = −2) -55 534 1047 534 1122 1636

∆SS -524 228 514 1157 1909 2195

λπM 5546 5605 5655 5546 5605 5655

wh to avoid foreclosure -18.48 -16.72 -10.53 12.31 13.36 17.06

Reduced λ (Percent) 47.45 44.48 35.49 6.38 3.84 -4.79

Notes: Consumer Surplus calibrates α to median own price elasticity of ε = −2. Calibration only affects the scale of consumer

surplus calculations, not the ranking of various options. For more details see Appendix B.4.

C.3. Robustness to Alternative Fixed Costs

We reproduce the ‘net effects’ from the text as Tables A3 and A4 below. The main response

to the fixed cost is that potential efficiency effects are smaller when the fixed costs are smaller

and larger when the fixed costs are greater. Higher fixed costs reduce both the profits and
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the effort level of the retailer.

We find that all of the qualitative results are the same: the rebate can be used to

foreclose the rival even though (H,M) generates more producer surplus than (M,M). The

point estimates all have the same sign as those in Table 13, though for FC = 15 the sign flips

on ∆CS when moving from (H,M) and eNR to eR and (M,M). Thus even at the vertically

integrated effort level, it is impossible to compensate consumers for the inferior assortment.

The effect on rival countermeasures are similar: at the lower fixed cost Hershey would

need to reduce prices even more than in the main text to avoid foreclosure; while Mars

could reduce the generosity of the rebate slightly more (around 7%); at the higher fixed cost

Hershey would need to reduce prices less than in the main text to avoid foreclosure; while

Mars could reduce the generosity of the rebate slightly less (around 5%).

Table A3: Net Effect of Efficiency and Foreclosure (FC = 5)

from (H,M) and eNR (H,H) and eNR

to (M,M) and: eR eV I eSOC eR eV I eSOC

∆πR -656 -698 -950 -1622 -1664 -1915

∆πM 2549 2621 2741 5542 5614 5734

∆πH -2168 -2168 -2168 -3631 -3631 -3631

∆πN -9 -8 -3 -55 -54 -50

∆PS -285 -253 -381 234 266 138

∆CS(ε = −2) -183 -9 289 426 600 897

∆SS -468 -262 -92 660 865 1035

λπM 5670 5686 5712 5670 5686 5712

wh to avoid foreclosure -21.41 -21.08 -18.2 11.81 12.01 13.73

Reduced λ (Percent) 50.18 49.59 45.41 7.36 6.89 2.92

Notes: Consumer Surplus calibrates α to median own price elasticity of ε = −2. Calibration only affects the scale of consumer

surplus calculations, not the ranking of various options. For more details see Appendix B.4.
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Table A4: Net Effect of Efficiency and Foreclosure (FC = 15)

from (H,M) and eNR (H,H) and eNR

to (M,M) and: eR eV I eSOC eR eV I eSOC

∆πR -792 -971 -1788 -1509 -1688 -2505

∆πM 2679 2992 3414 5777 6090 6512

∆πH -2202 -2202 -2202 -3673 -3673 -3673

∆πN -12 -21 -30 -54 -63 -73

∆PS -328 -203 -607 541 666 261

∆CS(ε = −2) 24 702 1630 606 1284 2212

∆SS -303 500 1023 1147 1950 2474

λπM 5426 5496 5590 5426 5496 5590

wh to avoid foreclosure -15.64 -14.26 -5.15 13.15 13.98 19.45

Reduced λ (Percent) 44.82 42.25 28.61 4.5 2.45 -10.53

Notes: Consumer Surplus calibrates α to median own price elasticity of ε = −2. Calibration only affects the scale of consumer

surplus calculations, not the ranking of various options. For more details see Appendix B.4.
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C.4. Joint Retailer-Consumer Surplus

We also allow the retailer to optimize the joint surplus of the retailer and the consumer. This

may be an important consideration if providing good service to the consumer is an impor-

tant aspect of how our retail operator competes with other vending operators for contracts

with retail locations. It may also help explain why our retailer provides an extremely high

frequency of service visits (beyond what we can justify with an optimal stocking model). We

find that for ε = −1 and γ = 3 so that γ
α

= 6, we are able to produce an effort policy which

matches the mean of the observed distribution of retailer effort in Figure 4 of e ≈ 130.

Table A5 reports the optimal effort policies of a joint Retailer-Consumer entity. By

placing a large weight on consumer surplus, the retailer substantially increases its effort under

all assortments. Also, because the resulting effort level is so high the potential efficiency

effects of the rebate are highly limited and the gap between the effort set by the retailer and

eV I is quite small.

Table A5: Optimal Effort Policies: Restock after how many customers?

(M,H) (H,H) (M,M) (M,H) (H,H) (M,M)
Effort Policy % Change from eNR

eNR 130 130 130 0.00 0.00 0.00
eR 130 130 130 0.00 0.00 0.00
eV I 130 130 130 0.00 0.00 0.00
eIND 130 130 130 0.00 0.00 0.00
eSOC 172 168 171 164.62 167.69 165.38
eSOC1 157 154 156 176.15 178.46 176.92
eSOC4 183 178 181 156.15 160.00 157.69

Notes: Reported for retailer who places weight γ
α

= 6 on consumer surplus. For further details, see Appendix B.4. The width
of the 95% CI is at most one unit.

The potential gains are much smaller than they are in the case where the retailer does

not take consumer surplus into account. For all elasticities, the potential change in the

restocking frequency is now less than 5%. Likewise, the maximum change in social surplus

is less than $75 for all elasticities and assortments. Once the retailer internalizes the effect

of effort on consumers, there is little to be gained from internalizing the same effort effect on

the upstream manufacturer. The retailer-consumer pair exerts more effort than the vertically

integrated retailer-Mars pair in our base scenario.

Though it is likely in practice that MarkVend at least partially considers consumer sur-

plus when choosing its effort level, our base scenario ignores this possibility. Incorporating

consumer surplus in the retailer’s effort decision drastically reduces potential efficiency ef-

fects of the rebate contract. Ultimately, we are interested in whether an efficiency effect
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might outweigh potential foreclosure effects, and we design our baseline estimates to be an

‘upper bound’ on such effects.

Table A6: Net Effect of Efficiency and Foreclosure

from (H,M) and eNR (H,H) and eNR

to (M,M) and: eR eV I eSOC eR eV I eSOC

∆πR -616 -616 1624 -1679 -1679 561

∆πM 2507 2507 2199 5514 5514 5207

∆πH -2176 -2176 -2176 -3641 -3641 -3641

∆πN -11 -11 -18 -58 -58 -65

∆PS -296 -296 1630 137 137 2062

∆CS(ε = −2) -275 -275 -1021 422 422 -324

∆SS -571 -571 609 559 559 1738

λπM 5718 5718 5649 5718 5718 5649

wh to avoid foreclosure -22.31 -22.31 -50.01 11.97 11.97 -4.59

Reduced λ (Percent) 51.17 51.17 90.23 6.96 6.96 45.49

Notes: Reported for retailer who places weight γ
α

= 6 on consumer surplus. For more details see Appendix B.4.

D. Full π(a, e) Tables

We compute π(a, e) for every agent and 15 assortments. We report only the most relevant

assortments and effort levels below. Note that π(a, e) denotes the present discounted value

of profits from a single machine in the top quartile of the MarkVend enterprise. We cannot

report exact profits at the enterprise level but it is safe to assume they are orders of magnitude

larger. First column reports policy type and value in parentheses.
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Policy πR λπM πM πH πN πR + πM PS CS

(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(217) 94,733 4,964 22,363 2,181 2,149 117,095 121,425 65,491
eR(211) 94,723 4,985 22,454 2,179 2,146 117,177 121,502 65,685
eV I(197) 94,612 5,028 22,648 2,173 2,143 117,260 121,576 66,105
eIND(197) 94,612 5,028 22,648 2,173 2,143 117,260 121,576 66,105
eSOC(172) 94,060 5,091 22,934 2,168 2,141 116,994 121,303 66,738
eSOC1(157) 93,469 5,121 23,068 2,169 2,142 116,536 120,848 67,048
eSOC4(183) 94,363 5,066 22,818 2,170 2,141 117,181 121,492 66,478

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 92,296 5,152 23,207 2,174 2,147 115,503 119,824 67,387
ePost2008(144) 92,768 5,142 23,162 2,172 2,145 115,931 120,247 67,276
eNR(212) 95,548 4,288 19,316 3,644 2,192 114,864 120,700 64,902
eR(206) 95,537 4,310 19,415 3,641 2,190 114,952 120,783 65,095
eV I(191) 95,407 4,360 19,642 3,634 2,187 115,048 120,869 65,539
eIND(191) 95,407 4,360 19,642 3,634 2,187 115,048 120,869 65,539
eSOC(168) 94,876 4,424 19,926 3,630 2,187 114,802 120,619 66,111

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(154) 94,316 4,454 20,063 3,632 2,189 114,379 120,200 66,398
eSOC4(178) 95,161 4,398 19,812 3,631 2,186 114,972 120,789 65,878
ePre2008(137) 93,339 4,483 20,194 3,637 2,194 113,533 119,364 66,688
ePost2008(144) 93,791 4,472 20,144 3,635 2,192 113,934 119,761 66,574
eNR(217) 94,005 5,521 24,867 0 2,141 118,872 121,013 65,173
eR(211) 94,005 5,541 24,958 0 2,139 118,962 121,101 65,371
eV I(197) 93,915 5,584 25,152 0 2,135 119,067 121,201 65,801
eIND(197) 93,915 5,584 25,152 0 2,135 119,067 121,201 65,801
eSOC(172) 93,397 5,647 25,438 0 2,132 118,835 120,967 66,448
eSOC1(157) 92,825 5,677 25,572 0 2,133 118,397 120,530 66,765
eSOC4(183) 93,686 5,621 25,322 0 2,132 119,008 121,141 66,182
ePre2008(137) 91,673 5,708 25,713 0 2,137 117,387 119,523 67,111
ePost2008(144) 92,139 5,698 25,668 0 2,135 117,807 119,942 66,998

Table A7: Simulated Profits for Main Specification

Notes: Profit numbers represent the long-run expected profit from a top quartile machine. Rebate payments are assumed to
only be paid under an (M,M) assortment; rebate payments are assumed to not be paid to the retailer. The socially-optimal
assortment is (H,M). First column reports policy type and value in parenthesis. FC = 10,MC = 0.15.
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Policy πR λπM πM πH πN πR + πM PS CS

(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(217) 94,733 4,964 31,024 3,361 3,260 125,756 132,377 65,491
eR(211) 94,723 4,984 31,150 3,356 3,257 125,873 132,486 65,685
eV I(191) 94,523 5,044 31,525 3,345 3,250 126,048 132,643 66,271
eIND(192) 94,539 5,041 31,508 3,345 3,250 126,048 132,643 66,244
eSOC(169) 93,959 5,097 31,856 3,340 3,248 125,815 132,403 66,804
eSOC1(155) 93,372 5,124 32,024 3,342 3,251 125,396 131,989 67,086
eSOC4(179) 94,265 5,075 31,716 3,341 3,248 125,981 132,570 66,576

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 92,296 5,151 32,195 3,348 3,258 124,491 131,098 67,387
ePost2008(144) 92,768 5,141 32,133 3,345 3,255 124,901 131,501 67,276
eNR(212) 95,548 4,287 26,797 5,614 3,326 122,344 131,284 64,902
eR(206) 95,537 4,310 26,935 5,609 3,323 122,472 131,403 65,095
eV I(185) 95,310 4,378 27,362 5,595 3,317 122,672 131,584 65,700
eIND(186) 95,328 4,375 27,343 5,596 3,317 122,671 131,585 65,674
eSOC(165) 94,772 4,430 27,687 5,593 3,318 122,459 131,370 66,176

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(152) 94,219 4,457 27,857 5,596 3,322 122,076 130,994 66,435
eSOC4(174) 95,058 4,408 27,550 5,593 3,317 122,608 131,518 65,974
ePre2008(137) 93,339 4,482 28,016 5,604 3,329 121,354 130,287 66,688
ePost2008(144) 93,791 4,471 27,945 5,599 3,325 121,736 130,660 66,574
eNR(217) 94,005 5,520 34,498 0 3,248 128,503 131,751 65,173
eR(211) 94,005 5,540 34,624 0 3,245 128,629 131,873 65,371
eV I(191) 93,835 5,600 34,999 0 3,237 128,833 132,070 65,970
eIND(192) 93,850 5,597 34,982 0 3,237 128,831 132,069 65,943
eSOC(169) 93,300 5,653 35,330 0 3,234 128,631 131,865 66,516
eSOC1(155) 92,731 5,680 35,499 0 3,236 128,230 131,466 66,804
eSOC4(179) 93,593 5,630 35,190 0 3,235 128,783 132,018 66,282
ePre2008(137) 91,673 5,708 35,672 0 3,242 127,345 130,587 67,111
ePost2008(144) 92,139 5,697 35,609 0 3,239 127,748 130,987 66,998

Table A8: Simulated Profits for MC = 0 Specification

Notes: Profit numbers represent the long-run expected profit from a top quartile machine. Rebate payments are assumed to
only be paid under an (M,M) assortment; rebate payments are assumed to not be paid to the retailer. The socially-optimal
assortment is (H,M). First column reports policy type and value in parenthesis. FC = 10,MC = 0.
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Policy πR λπM πM πH πN πR + πM PS CS

(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(236) 39,596 2,078 9,362 908 895 48,958 50,761 27,388
eR(231) 39,593 2,086 9,394 907 894 48,987 50,788 27,456
eV I(216) 39,544 2,105 9,481 905 892 49,025 50,822 27,643
eIND(217) 39,549 2,104 9,476 905 892 49,025 50,822 27,631
eSOC(192) 39,325 2,130 9,595 903 891 48,920 50,714 27,894
eSOC1(177) 39,084 2,142 9,650 903 892 48,733 50,528 28,022
eSOC4(202) 39,439 2,120 9,552 903 891 48,991 50,785 27,797

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 37,885 2,163 9,743 909 898 47,629 49,436 28,265
ePost2008(144) 38,168 2,160 9,731 908 897 47,900 49,704 28,231
eNR(231) 39,938 1,797 8,095 1,518 913 48,032 50,463 27,143
eR(225) 39,933 1,806 8,136 1,516 912 48,069 50,498 27,224
eV I(210) 39,878 1,827 8,231 1,513 911 48,109 50,533 27,408
eIND(211) 39,884 1,826 8,225 1,513 911 48,109 50,533 27,396
eSOC(188) 39,670 1,852 8,344 1,512 910 48,014 50,436 27,634

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(174) 39,442 1,865 8,400 1,513 912 47,842 50,266 27,752
eSOC4(197) 39,775 1,843 8,302 1,512 910 48,077 50,499 27,548
ePre2008(137) 38,348 1,886 8,496 1,521 918 46,844 49,283 27,977
ePost2008(144) 38,623 1,883 8,482 1,519 917 47,105 49,541 27,943
eNR(236) 39,294 2,310 10,406 0 892 49,701 50,592 27,256
eR(231) 39,295 2,317 10,438 0 891 49,733 50,624 27,325
eV I(216) 39,255 2,337 10,525 0 889 49,781 50,670 27,517
eIND(217) 39,260 2,335 10,520 0 889 49,780 50,669 27,505
eSOC(192) 39,051 2,362 10,639 0 888 49,690 50,578 27,775
eSOC1(177) 38,818 2,374 10,694 0 888 49,512 50,400 27,905
eSOC4(202) 39,160 2,352 10,596 0 888 49,755 50,643 27,675
ePre2008(137) 37,635 2,395 10,790 0 894 48,425 49,319 28,152
ePost2008(144) 37,916 2,393 10,777 0 892 48,694 49,586 28,118

Table A9: Simulated Profits for Middle 50% machines

Notes: Profit numbers represent the long-run expected profit from a 25-75 percentile machine. Rebate payments are assumed
to only be paid under an (M,M) assortment; rebate payments are assumed to not be paid to the retailer. The socially-optimal
assortment is (H,M). First column reports policy type and value in parenthesis. FC = 10,MC = 0.15.
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Policy πR λπM πM πH πN πR + πM PS CS

(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(166) 101,096 5,104 22,991 2,168 2,141 124,087 128,396 66,869
eR(163) 101,093 5,110 23,017 2,168 2,141 124,111 128,420 66,931
eV I(154) 101,052 5,126 23,091 2,169 2,143 124,144 128,456 67,105
eIND(153) 101,045 5,128 23,099 2,170 2,143 124,144 128,456 67,123
eSOC(135) 100,787 5,155 23,219 2,174 2,148 124,007 128,329 67,418
eSOC1(130) 100,669 5,161 23,248 2,176 2,150 123,917 128,243 67,492
eSOC4(143) 100,932 5,144 23,169 2,172 2,145 124,101 128,419 67,293

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 100,829 5,152 23,207 2,174 2,147 124,036 128,357 67,387
ePost2008(144) 100,947 5,142 23,162 2,172 2,145 124,109 128,426 67,276
eNR(161) 102,062 4,439 19,998 3,631 2,188 122,059 127,877 66,260
eR(158) 102,059 4,446 20,026 3,631 2,188 122,085 127,904 66,320
eV I(148) 102,008 4,465 20,113 3,633 2,190 122,121 127,945 66,507
eIND(148) 102,008 4,465 20,113 3,633 2,190 122,121 127,945 66,507
eSOC(131) 101,755 4,492 20,234 3,640 2,196 121,989 127,826 66,780

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(130) 101,732 4,493 20,241 3,641 2,197 121,973 127,810 66,795
eSOC4(138) 101,888 4,482 20,187 3,637 2,194 122,075 127,906 66,673
ePre2008(137) 101,872 4,483 20,194 3,637 2,194 122,066 127,897 66,688
ePost2008(144) 101,969 4,472 20,144 3,635 2,192 122,113 127,939 66,574
eNR(166) 100,442 5,660 25,495 0 2,132 125,937 128,068 66,581
eR(163) 100,442 5,666 25,522 0 2,132 125,964 128,096 66,645
eV I(154) 100,412 5,682 25,596 0 2,133 126,008 128,141 66,822
eIND(153) 100,405 5,684 25,604 0 2,133 126,009 128,143 66,841
eSOC(135) 100,167 5,711 25,726 0 2,137 125,893 128,030 67,142
eSOC1(130) 100,053 5,718 25,755 0 2,139 125,808 127,947 67,217
eSOC4(143) 100,304 5,700 25,675 0 2,135 125,978 128,114 67,015
ePre2008(137) 100,206 5,708 25,713 0 2,137 125,920 128,057 67,111
ePost2008(144) 100,317 5,698 25,668 0 2,135 125,985 128,120 66,998

Table A10: Simulated Profits for FC = 5

Notes: Profit numbers represent the long-run expected profit from a top quartile machine with FC = 5. Rebate payments
are assumed to only be paid under an (M,M) assortment; rebate payments are assumed to not be paid to the retailer. The
socially-optimal assortment is (H,M). First column reports policy type and value in parenthesis. FC = 5,MC = 0.15.
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Policy πR λπM πM πH πN πR + πM PS CS

(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(251) 89,383 4,832 21,764 2,202 2,165 111,147 115,514 64,228
eR(244) 89,369 4,861 21,898 2,198 2,161 111,267 115,626 64,510
eV I(226) 89,185 4,932 22,218 2,186 2,152 111,403 115,741 65,183
eIND(227) 89,201 4,929 22,201 2,187 2,153 111,402 115,742 65,148
eSOC(197) 88,372 5,028 22,648 2,173 2,143 111,020 115,336 66,105
eSOC1(179) 87,477 5,075 22,862 2,169 2,141 110,339 114,649 66,576
eSOC4(209) 88,794 4,991 22,483 2,178 2,146 111,277 115,600 65,748

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 83,763 5,152 23,207 2,174 2,147 106,970 111,291 67,387
ePost2008(144) 84,590 5,142 23,162 2,172 2,145 107,752 112,069 67,276
eNR(246) 90,100 4,144 18,666 3,673 2,207 108,766 114,646 63,646
eR(239) 90,084 4,176 18,811 3,666 2,203 108,894 114,764 63,927
eV I(220) 89,871 4,257 19,176 3,650 2,195 109,047 114,891 64,632
eIND(221) 89,889 4,253 19,158 3,651 2,195 109,046 114,892 64,597
eSOC(193) 89,080 4,354 19,613 3,635 2,187 108,693 114,515 65,483

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(176) 88,223 4,404 19,836 3,631 2,186 108,059 113,875 65,926
eSOC4(205) 89,510 4,314 19,431 3,640 2,190 108,941 114,771 65,126
ePre2008(137) 84,805 4,483 20,194 3,637 2,194 105,000 110,831 66,688
ePost2008(144) 85,612 4,472 20,144 3,635 2,192 105,756 111,582 66,574
eNR(251) 88,599 5,389 24,273 0 2,157 112,872 115,030 63,885
eR(244) 88,597 5,418 24,406 0 2,154 113,003 115,157 64,172
eV I(226) 88,443 5,488 24,723 0 2,145 113,166 115,310 64,859
eIND(227) 88,457 5,485 24,706 0 2,145 113,164 115,309 64,823
eSOC(197) 87,675 5,584 25,152 0 2,135 112,827 114,962 65,801
eSOC1(179) 86,806 5,631 25,366 0 2,132 112,172 114,304 66,282
eSOC4(209) 88,078 5,547 24,987 0 2,138 113,066 115,204 65,436
ePre2008(137) 83,140 5,708 25,713 0 2,137 108,854 110,990 67,111
ePost2008(144) 83,960 5,698 25,668 0 2,135 109,628 111,763 66,998

Table A11: Simulated Profits for FC = 15

Notes: Profit numbers represent the long-run expected profit from a top quartile machine with FC = 15. Rebate payments
are assumed to only be paid under an (M,M) assortment; rebate payments are assumed to not be paid to the retailer. The
socially-optimal assortment is (H,M). First column reports policy type and value in parenthesis. FC = 15,MC = 0.15.
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(H,M) Assortment: Reeses Peanut Butter Cup and Three Musketeers

eNR(130) 91,742 5,161 23,248 2,176 2,150 114,990 119,316 67,492
eR(130) 91,742 5,161 23,248 2,176 2,150 114,990 119,316 67,492
eV I(130) 91,742 5,161 23,248 2,176 2,150 114,990 119,316 67,492
eIND(130) 91,742 5,161 23,248 2,176 2,150 114,990 119,316 67,492
eSOC(172) 94,060 5,091 22,934 2,168 2,141 116,994 121,303 66,738
eSOC1(157) 93,469 5,121 23,068 2,169 2,142 116,536 120,848 67,048
eSOC4(183) 94,363 5,066 22,818 2,170 2,141 117,181 121,492 66,478

(H,H) Assortment: Reeses Peanut Butter Cup and Payday

ePre2008(137) 92,296 5,152 23,207 2,174 2,147 115,503 119,824 67,387
ePost2008(144) 92,768 5,142 23,162 2,172 2,145 115,931 120,247 67,276
eNR(130) 92,805 4,493 20,241 3,641 2,197 113,045 118,883 66,795
eR(130) 92,805 4,493 20,241 3,641 2,197 113,045 118,883 66,795
eV I(130) 92,805 4,493 20,241 3,641 2,197 113,045 118,883 66,795
eIND(130) 92,805 4,493 20,241 3,641 2,197 113,045 118,883 66,795
eSOC(168) 94,876 4,424 19,926 3,630 2,187 114,802 120,619 66,111

(M,M) Assortment: Three Musketeers and Milkyway

eSOC1(154) 94,316 4,454 20,063 3,632 2,189 114,379 120,200 66,398
eSOC4(178) 95,161 4,398 19,812 3,631 2,186 114,972 120,789 65,878
ePre2008(137) 93,339 4,483 20,194 3,637 2,194 113,533 119,364 66,688
ePost2008(144) 93,791 4,472 20,144 3,635 2,192 113,934 119,761 66,574
eNR(130) 91,126 5,718 25,755 0 2,139 116,881 119,020 67,217
eR(130) 91,126 5,718 25,755 0 2,139 116,881 119,020 67,217
eV I(130) 91,126 5,718 25,755 0 2,139 116,881 119,020 67,217
eIND(130) 91,126 5,718 25,755 0 2,139 116,881 119,020 67,217
eSOC(172) 93,397 5,647 25,438 0 2,132 118,835 120,967 66,448
eSOC1(157) 92,825 5,677 25,572 0 2,133 118,397 120,530 66,765
eSOC4(183) 93,686 5,621 25,322 0 2,132 119,008 121,141 66,182
ePre2008(137) 91,673 5,708 25,713 0 2,137 117,387 119,523 67,111
ePost2008(144) 92,139 5,698 25,668 0 2,135 117,807 119,942 66,998

Table A12: Simulated Profits with Weight on Consumer Surplus

Notes: Profit numbers represent the long-run expected profit from a top quartile machine with MC = 0.15 and FC = 10 but
with weight of γ = 3 on consumer surplus (ε = −1) in retailer’s objective function. Retail profits do not include rebate payments.
The socially-optimal assortment is (H,M). First column reports policy type and value in parenthesis. FC = 10,MC = 0.15.
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