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Abstract

Inter-temporal tradeoffs are an important part of the consumer decision making
process. These tradeoffs are especially important in markets for high-tech consumer
goods where prices and costs fall rapidly over time. These tradeoffs are important not
only for understanding consumer behavior, but for understanding firm pricing behavior
as well. Prices in markets for durable goods may be low for one of several reasons.
For example, prices may be low because costs are low, prices may be low because
high-value consumers have already made purchases, or prices may be low because
consumers anticipate lower prices in the future. This paper estimates a dynamic model
of demand and supply in order to measure the relative magnitudes and importance
of these effects in the market for LCD Televisions. This paper contributes to the
existing empirical literature on dynamic durable goods in three ways. It improves
the estimation by employing an empirical likelihood estimator instead of a generalized
method of moments estimator. It improves the computation by recasting the problem
in the language of constrained optimization, which makes the dynamic problem only
slightly more difficult to solve than the static problem. Finally, it makes use of reliable
marginal cost data from the LCD television industry, which makes it possible to re-
compute markups under counterfactual scenarios without worrying about recovering
marginal costs from the model.



1 Introduction

An important aspect of consumer choice is that for many products, consumers face inter-
temporal tradeoffs. That is consumers may buy a good today and enjoy the consumption
value for several periods or they may wait and make a purchase later when prices are likely
to be lower. The option to wait is important in understanding consumer choices for high-
technology products, where markets are often characterized by rapidly increasing product
quality and rapidly decreasing prices. Consumers decide not only which product to purchase,
but also when to make a purchase.

It is important to understand the relationship between dynamic consumer behavior and
firm pricing decisions for two reasons. The first is that the ability of firms to extract rents is
an important driver of innovation and research and development in high-technology markets.
The second is the Coasian argument that when firms compete with their own products over
time, it reduces the effects of market power. The ability to decompose dynamic consumer
behavior can help us understand why prices are low (or high) in durable goods market. For
example, prices may be low because costs are low; prices may be low because consumers have
a low cost of waiting; or prices may be low because firms have already sold to high-value
consumers. These three possibilities can have very different implications for policy makers
and firms.

This paper focuses on how dynamic consumer behavior influences the prices firms charge
(or would charge) in equilibrium by decomposing consumer dynamics into two major parts.
The first aspect is that as consumers make purchases, the distribution of remaining con-
sumers changes over time. This gives firms an incentive to engage in inter-temporal price
discrimination. Firms set initial prices high, and sell only to consumers with the highest
valuations. Over time, firms reduce prices and sell to the highest value consumers in the
remaining population. This leads to a decline in prices over time. The second aspect is
that when prices are decreasing, consumers have an option value associated with waiting. If
prices are too high, consumers can wait and make a purchase at a later time. In addition to
responding to these two effects, firms also take into account how prices affect both the future
distribution of consumers and the perceived value option value associated with waiting.

This paper examines these dynamics through the lens of the LCD television industry.
This is a large industry that has been characterized by substantial process improvements
and rapid declines in price. One nice feature of the industry that this paper is able to exploit
is that the primary input into LCD Televisions are LCD panels; which provide information
about how the costs of LCD televisions change over time. A second feature of the industry
is that prior to 2006, there were no LCD televisions, thus partially alleviating the initial
conditions problem faced in many dynamic settings. In the period from 2002-2006, the LCD
panel makers (providing displays for phones and laptops) were widely known to have engaged
in one of the largest price fixing conspiracies of all time. This paper looks at the first two
generations of the LCD-TV industry that followed the end of the price-fixing regime from
2006-2009. During this period, it was widely reported that the industry invested on the order
of $50 Billion, by 2008 margins of LCD televisions were effectively zero, and nearly the entire
industry suffered major losses. This paper provides a framework for understanding whether
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or not firms simply overestimated the value generated by LCD televisions or whether some
combination of competition and forward looking behavior made that value impossible to
extract.

This paper improves upon the existing empirical literature on dynamic consumer behavior
in three ways. First, it improves the computation by recasting the problem in the language of
the constrained optimization. In this formulation, the dynamic problem is not appreciably
harder to solve than the static problem. Additionally, this framework accommodates an
estimator based on Empirical Likelihood (EL) rather than Generalized Method of Moments
(GMM), which is higher-order efficient and may be less biased in finite samples (Conlon
2012). Finally, it makes use of a new dataset on LCD televisions. One advantage of working
with this industry is that consumers rarely discard or replace their LCD TV’s during the
sample period, which simplifies the model of consumer behavior. Also, this dataset includes
not only sales and prices, but marginal costs as well. By observing marginal costs instead
of inferring them from pricing decisions, it is possible to consider price setting behavior by
firms.

There is a large theoretical literature on the durable goods problem, including the Coase
Conjecture Coase (1972). This literature studies how firms compete with their own products
over time, and how this competition limits the rents extracted by firms. In general, the
theoretical literature Stokey (1982), Bulow (1982), has focused on establishing closed-form
results for tractable models (monopoly, single-product, linear demand, etc.), but few results
exist for the more complicated multi-firm, multi-product, multi-characteristic settings that
are common in the empirical literature on differentiated products markets.

There is also a small and growing empirical literature which aims to expand static
oligopoly models of differentiated products demand (Berry, Levinsohn, and Pakes 1995) to
markets with dynamic consumer behavior; this literature has generally taken two directions.
The first relies primarily on scanner data, and examines how consumers stockpile inventories
of products when prices are low. Examples include Erdem, Imai, and Keane (2003), Hendel
and Nevo (2007b), and Hendel and Nevo (2007a). The other direction focuses on adoption
of high-tech products such as digital cameras and video-games; examples include: Melnikov
(2001), Gowrisankaran and Rysman (2009), Carranza (2007), Nair (2007), Zhao (2008), and
Lee (2009). With a few exceptions, previous studies have focused on the dynamic decisions
of consumers but not dynamic pricing decisions of firms. One exception is Nair (2007), who
considers the problem of a video game seller as a single product durable-goods monopolist
with constant marginal costs. Another exception is Zhao (2008), who uses a dynamic Euler
equation approach motivated by Berry and Pakes (2000) in order to recover marginal costs
from a dynamic model of supply and demand.

One reason for the paucity of empirical work on models of dynamic supply and demand
is that the task of estimating dynamic models of demand is quite challenging by itself.
Most approaches require solving an optimal stopping problem akin to Rust (1987) inside of
the fixed point of static demand model like Berry, Levinsohn, and Pakes (1995). Such an
approach presents both numerical and computational challenges; and often requires highly
specialized algorithms and weeks of computer time. This paper takes a different approach,
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and considers a model similar to that of Gowrisankaran and Rysman (2009), but employs
the MPEC (Mathematical Programming with Equilibrium Constraints) method of Su and
Judd (2008) to simplify estimation. One way to understand this approach, is that instead of
solving the optimal stopping problem at each step of the demand problem, it is possible to
define additional variables and consider a single constrained problem which treats the two
problems simultaneously. This makes it possible to use state-of-the-art commercial solvers
for estimation, instead of relying on custom algorithms. It is possible to use this single frame-
work, for estimation, inference and testing, Conlon (2012) develops a method for estimating
moment condition models via the MPEC approach using empirical likelihood (EL) instead
of generalized method of moments (GMM). The EL estimator admits a simple test statis-
tic that can be inverted to obtain confidence intervals in the MPEC framework. Evidence
indicates that these confidence intervals have less bias, and better coverage properties than
confidence intervals implied by the asymptotic distribution of GMM estimators (Newey and
Smith 2004). This EL framework also makes it possible to directly test different modeling
assumptions and conduct inference on counterfactual predictions.

In order to understand the effect durable goods have on prices, it is necessary to consider
the dynamic pricing problem firms face. In a dynamic context, prices affect both the sales
of other products today, and residual demand in the future. Both firms and consumers may
have beliefs (and strategies) regarding the future path of prices, which may depend on the
full history of previous actions. The resulting pricing strategies can be complex, and not
necessarily unique. As in much of the previous literature, this paper focuses on a specific
set of Markov Perfect Equilibria (MPE) in order to avoid these complications. Specifically,
I consider a Markov Perfect Equilibrium where firms only take into account of the consumer
types remaining in the market, and each type’s reservation value when setting prices. In
several cases where demand is deterministic, the resulting equilibrium is subgame perfect
and can be solved by backward induction.

In this simplified framework, it is possible to conduct counterfactual experiments to de-
compose the effect that inter-temporal price discrimination, the value of waiting, and the
indirect effects have on prices. For example, to measure the direct effect of price discrimina-
tion, one constructs a counterfactual equilibrium where the distribution of consumer types
is fixed over time. The other effect of price discrimination is that prices in one period may
effect demand in other periods. However, it is possible to construct counterfactual experi-
ments where firms set prices without internalizing the effects on other periods. It is possible
to construct similar experiments for the option value of waiting. By comparing predicted
prices in both of these cases to a baseline case, it is possible to separately measure the impact
that changes in the consumer population and the option value of waiting have on prices.

The principal empirical finding from these counterfactual experiments is that the dis-
tribution of consumer types (the price discrimination motive) appears to have the most
substantial impact on prices (about 50%). The option value of waiting has a smaller, but
still significant impact on prices (about 20%). Meanwhile, the indirect effects have relatively
small effects on prices, even for dominant firms. These results highlight important differ-
ences in durable goods markets between monopoly and oligopoly cases. The distribution of
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consumer types describes how much surplus remains in the market, while the option value of
waiting limits firms’ ability to extract surplus from consumers. In the oligopoly framework,
competition also limits a firm’s ability to extract surplus from consumers. Similarly, compe-
tition reduces the extent to which firms internalize the effects of prices today on tomorrow’s
state, since there is no guarantee that a marginal consumer today will be the same firm’s
consumer tomorrow.

The rest of this paper is organized as follows. Section 2 provides additional details
regarding the LCD television industry and the dataset used in the empirical exercise. Section
3 describes a dynamic model of demand for durable goods similar to Gowrisankaran and
Rysman (2009) and makes some modifications specific to the LCD TV industry. When
multiple purchases are ruled out, the problem is substantially simplified, and the value
of waiting can be recovered without further restrictions. Section 4 discusses the MPEC
estimation procedure that makes it possible to estimate the model, as well as presenting the
empirical likelihood estimator which offers an alternative to the traditional GMM approach.
Section 5 provides an in-depth examination of firms’ Markov-Perfect pricing strategies, and
describes how counterfactual experiments separate the effects of different aspects of consumer
behavior on prices. Section 6 presents the empirical results, and the Appendix provides
additional details on the EL/MPEC approach including inference.

2 Description of Data and Industry

This paper makes use of a new dataset provided by NPD-DisplaySearch which tracks the
prices, costs, and sales of LCD televisions over 13 quarters from 2006-2009. The market for
LCD Televisions is a good example of a durable goods market, where consumers have strong
incentives to strategically time their purchases. Over the sample, the average LCD television
declined over 60% in price, with some price declines in excess of 80%. Although the dataset
tracks LCD televisions as small as 10 inches, this paper focuses only on High Definition LCD
TV’s that are 27” or larger. For this sample, the observed time period roughly corresponds
to the entire universe of sales. This makes it ideal for studying durable goods markets,
because consumers do not begin the sample with an existing inventory of LCD televisions.
Moreover, survey data indicates that repeated purchases in the 27”+ category are rare,
so most consumers only purchase an LCD television once during the sample period. An
additional benefit of studying LCD TV’s, is that the panel itself is the major cost driver
in the manufacturing process. Panels are typically produced by separate OEMs and panel
prices are observable. In conjunction with other engineering tear-down analysis from NPD-
DisplaySearch this makes it possible to construct an accurate measure for marginal costs.

The LCD TV industry is important and interesting in its own right, with annual sales in
excess of $25 billion per year in the United States, and $80 billion worldwide. By 2008, nearly
90% of overall television sales were flat-panel LCD televisions.1 Televisions are an important

1The remaining television sales were older CRT televisions (at the lower end of the size-price spectrum),
and plasma display panel (PDP) televisions. PDP TV’s face higher materials costs that make it difficult for
small panels to be priced competitively, and sell mostly larger, high-end televisions. In Q1 2009, the market
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aspect of consumer spending, and are often considered a bellwether for consumer sentiment.
Substantial declines in prices over short periods of time help explain why televisions (along
with personal computers) are widely known to be a major challenge in the construction of
price indices (see Pakes (2003) and Erickson and Pakes (2008)).

The dataset is constructed by matching shipments and revenues of LCD televisions from
manufacturers to average selling prices (ASP) and cost estimates for each panel. The ASP
data roughly correspond to a sales-weighted average of prices paid at the retail point-of-
sale (POS). For each panel, the key characteristics are the size and the resolution. The
resolution is an important characteristic because it determines which inputs the television
can display natively or at full quality. The convention is to describe resolution by the number
of horizontal lines. LCD Televisions generally come in one of two resolutions: HD (720p),
and Full HD (1080p).2

Both price and shipment data are reported quarterly at the manufacturer-panel level. The
data are recorded as Samsung 46” 1080p 120Hz Q4 2008 rather than Samsung LN46B750 or
Samsung LN46A650. Some information is lost at this level of aggregation. For example, the
BLS tracks the number of video inputs, whether or not the TV supports picture-in-picture
(PiP), and a number of other features. Tracking at this level of detail is problematic because
it dramatically increases the number of models. Major manufacturers such as Samsung
and Sony, often offer models that are specific to major retail customers, like Best-Buy and
Wal-Mart. This kind of behavior makes models difficult to tell apart, since much of the
differentiation comes in the number of ports, or the software and menus on the television.

In some cases I aggregate data over manufacturers. There are two reasons that necessitate
this. The first reason is that aggregation avoids numerical issues when market shares are
very small. The second is that Ackerberg and Rysman (2005) show adding more brands
mechanically increases the overall quality of the market. In order to mitigate these two
potential problems, manufacturers with overall sales of less than twenty-thousand units are
aggregated into a catch-all category. Additionally, manufacturers who sell less than 100 units
of a particular (size,resolution,quarter)-tuple are also aggregated. This leaves 1406 “model”-
quarter observations. The number of observations still varies from period to period, which
can be explained by two factors. Over time, more FHD (1080p) TV’s and fewer HD TV’s
are offered; these trends are displayed in Table 1. Also, more manufacturers enter the larger
size segment over time, which is demonstrated in Table 2.

LCD manufacturers typically assemble televisions from parts purchased from original
equipment manufacturers (OEM’s). These components include: the panel itself, the power
supply, the tuner, and the bezel. A combination of OEM prices and engineering tear-down

share of PDP TV’s was insignificant in all size categories except for 50”+ televisions, while most sales of
LCD TV’s (and most of the overall market) are between 30− 46 inches.

2As an example, standard definition TV is broadcast in 480i which means 480 lines of resolution. DVD
players usually output 480p or 720p, High-Definition TV broadcasts are either in 720p (ABC, ESPN) or
1080i (FOX, NBC, CBS), while Blu-Ray disc players (BDP) and some video game consoles output 1080p.
The i and the p denote whether an input is scanned progressively or in an interlaced format. It is believed
that progressive scanning produces a better quality image, particularly for fast motion, but at the cost of
additional bandwidth.
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analysis makes it possible to estimate the manufacturing costs at the panel-quarter level,
for example 46” 1080p 120Hz in Q4 2007. An example of this cost breakdown is presented
in Table 3. The most important input, both as a fraction of the cost and as a source of
cost variation is the panel. Panels are produced by upstream panel manufacturers that are
independent of the TV manufacturers.3 In the sample, the panel represents 67% of the
cost for the average television, and represents nearly 80% of the cost variation. The panel
makes up a larger portion of the overall costs for larger televisions (≥ 40”), at 72%, than
it does for smaller televisons (< 40”), at only 61%. The share of panel price over time is
plotted in Figure 3. The share of panel price decreases as panels become less expensive
while other input prices remain largely the same (plastic, glass, power supply, etc.). The
panel production process is similar to that of microprocessors (CPUs), in which panels are
produced in batches rather than sequentially and each batch has a failure rate that engineers
improve over time. The source of the decline in panel prices comes from improvements in
the yield of the panel manufacturing process, which is plausibly exogenous.4

An important feature of the market is that panel prices fall sharply during the period of
observation. Steeply falling prices (and costs) are important for understanding the dynamic
tradeoffs faced by both consumers and manufacturers. From 2006 to 2009, consumers paid
on average 11% less per year for televisions, and prices of similar televisions fell 17%− 28%
per year. Table 4 reports the results of a hedonic regression of prices on functions of size
and resolution. To summarize the results: product characteristics alone explain about 66%
of the price variation in the market, and the addition of a linear time trend increases the R2

to 0.87, while inclusion of manufacturer dummies increases the R2 to 0.92. The regression
results imply that introduction of a new product characteristic (Full HD/1080p resolution)
commands a price premium equivalent to approximately three quarters of price declines.
Table 5 reports similar results for marginal costs, where product characteristics and a time
trend explain 97% of cost variation. It is also important to note that costs fall about
4% per quarter while prices fall almost twice as fast at 8% per quarter (and on a larger
basis) according to the hedonic estimates. This motivates the need for a dynamic model
which explains declining markups and addresses the inter-temporal nature of the consumer’s
problem.

3 Demand Model

There is a growing and recent literature on extending models of differentiated products
demand (such as Berry, Levinsohn, and Pakes (1995)) to incorporate consumer dynamics and
durable goods. Many of these approaches exploit a unique property of logit-type models that
allows the expected utility of making a purchase to be written in a closed-form that does not

3A notable exception is that Sony and Samsung buy most of their panels through S-LCD, a joint venture
owned 50-50 by the two manufacturers.

4It is important to note that the LCD panel manufacturing industry settled one of the largest price-fixing
cases of all time in 2006. However, this price fixing behavior was alleged to have taken place back in 2003
and pertained to smaller panels used in laptop computers, cell phones, and portable music players.
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depend on which product is purchased. This literature begins with Melnikov (2001) and has
been employed in a number of studies of the digital camera market including: Chintagunta
and Song (2003), Gowrisankaran and Rysman (2009), Carranza (2007), and Zhao (2008).
This section presents the model of Gowrisankaran and Rysman (2009) that has been modified
to fit the LCD TV industry.

In this model a consumer i with tastes αi decides whether to purchase good j in period t.
The utility of the purchase depends on observable characteristics xjt (size, resolution, brand,
and price) and unobservable quality ξjt. Consumers may also elect not to make a purchase
in period t and enjoy their existing television stock vi0t. Each consumer has an idiosyncratic
taste εijt that is IID (across time, products, and individuals) Type I extreme value:

uijt = vijt + εijt = xjtα
x
i + ξjt − αpi pjt + εijt or ui0t = vi0t + εi0t

The consumer decision problem is dynamic, as consumers decide whether to wait until next
period, or make a purchase today. In this context Ωt is a state variable that contains all of
the relevant information for the consumer’s decision. This dynamic optimization problem is
described by the following Bellman Equation:

Vi(εit, vi0t,Ωt) = max

{
ui0t + βE[Vi(εi,t+1, vi0t,Ωt+1)|Ωt],max

j
uijt + βE[Vi(εij,t+1, vijt,Ωt+1)|Ωt]

}
For studying the LCD Television market, it is helpful to assume that consumers exit the
market after making a purchase, or that consumers do not “upgrade” their televisions. This
is reasonable in the for the LCD television market because consumers rarely discard or
replace LCD televisions during the sample period. This may seem strange in light of the fact
that many US households hold in excess of four televisions. Households that do purchase
multiple televisions will locate them in separate rooms, and it is helpful to think of them as
separate consumers, rather than consumers making replacement decisions.5

When repeat purchases are ruled out, it is without loss of generality to assume that all
utility is earned at the time of purchase (since utility now represents the present discount
value of flow utilities 1

1−βvijt). It is also possible to normalize the expected utility of the

outside good E[ui0t] = 0.

Assumption 1. No Upgrades: vi0t = 0 and Vi(εij,t+1, vijt,Ωt+1) = 0 for all j 6= 0.

When we rule out upgrades, we do not need to keep track of a consumer’s existing stock
of televisions vi0t, since consumers exit the market after making a purchase. This simplifies

5In a world with “upgrades” consumers respond to utility differences between a 32” HD TV and a 55”
FHD TV, however, after purchasing a 55” FHD TV the 32” HD TV is lost forever. In a world without
upgrades we might think of the same household as two consumers a bedroom consumer might be price
sensitive and adopt the 32” HD TV early, while the living room consumer might have a higher taste for size
and resolution but adopt the 55” FHD TV later. If utilities are additively separable in televisions, we can
consider these as separate individuals. This is in contrast with the model of Gowrisankaran and Rysman
(2009). In the market for digital cameras, it is more reasonable to assume that consumers purchase a 3MP
digital camera, and later upgrade to a 10MP digital camera. After the “upgrade”, the 3MP camera is likely
to sit in a drawer and not see much use, unlike the second best television.
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the state space of the dynamic problem.

uijt = xjtα
x
i + ξjt − αpi pjt + εijt or ui0t = εi0t (1)

Vi(εit,Ωt) = max

{
εi0t + βE[EεVi(εit,Ωt+1)|Ωt],max

j
uijt

}
An important feature of the logit error is that it is possible to consider the expected utility
consumer i earns from making a purchase in period t without conditioning on which product
is purchased, this is known as the logit inclusive value:

δit = δit(Ωt) = Eε[max
j
uijt] = log

(∑
j

exp[xjtα
x
i + ξjt − αpi pjt]

)
(2)

Following Rust (1987), it is possible to integrate the logit error εijt out of the value function,
and we simplify the expression through the standard abuse of notation:

Vi(Ωt) =

∫
V (εit,Ωt)f(ε)

Vi(Ωt) = max

{
εi0t + βE[Vi(Ωt+1)|Ωt],max

j
uijt

}
= ln(exp(δit) + exp(βE[Vi(Ωt+1)|Ωt])) + η (3)

In the above expression, η is merely the constant of integration. It is important to note
that V (Ωt) only depends on the current and future inclusive values δit and not directly on
prices, product characteristics, or other features of the market. One challenge of dynamic
models is that when the state space is large, they become difficult to solve. In order to avoid
this challenge, and in light of the expression in (3), Melnikov (2001) and others assume that
the continuation value is fully described by the current period inclusive value δit. Such an
assumption would imply not only that Vi(Ωt) = Vi(δit), but also that the evolution of the state
space Pi(Ωt+1|Ωt) = Pi(δt+1|δt). One must also specify consumer beliefs in order to calculate
E[Vi(vijt, δi,t+1)|δit]. The literature considers different functional forms for E[δt+1|δt], the
most common is of which is an AR(1): δi,t+1 = γ1i+γ2iδit+νit. Functional form assumptions
on beliefs can be a bit controversial when they do not represent an implication of an economic
restriction on the model. While the demand model may indicate that the inclusive value
is sufficient for understanding a consumer’s two period decision, nothing indicates that the
inclusive value today is sufficient for predicting tomorrow’s inclusive value. Also, when
considering a model of supply as well as demand, firms may try to game the functional form
of consumer beliefs.

Assumption 2. Perfect Foresight: E[Vi,t+1(Ωt+1)|Ωt] = vi,t+1.

This paper considers an alternative where consumers have perfect foresight regarding
E[Vi(Ωt+1)|Ωt]. In this case, the relevant state variable is now just the period t. It is helpful
to define a new variable vit which represents the continuation value of consumer i in period
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t, so that vit = Vi(Ωt). It is also important to note that when we consider a finite number of
consumer types i and periods t, the resulting state space (and the dimension of vit) is finite.

vit = ln(exp(δit) + exp(βE[vi,t+1|Ωt])) + η

= ln(exp(δit) + exp(βvi,t+1)) + η (4)

This assumption may not be quite so strong in light of the existing functional form assump-
tions. The logit inclusive value implies that consumers only need to predict the expected
utility of tomorrow’s state, not necessarily every price and product characteristic. Each pe-
riod consumers only need to decide if any products exceed their reservation utility vi,t; the
content of this assumption is that vit is correct up to the logit error. Over short periods
of time, the LCD television market is reasonably predictable, as the hedonic regressions in
Table 4 indicate.

Under this assumption, the probability that consumer i buys good j in period t can be
expressed as the product of the probability that the consumer buys any good in period t and
the conditional probability of choosing good j given some purchase in t.

sijt =
eδit

evit
· e

xjtα
x
i +ξjt−αpi pjt

eδit
= exp[xjtα

x
i + ξjt − αpi pjt − vit] (5)

We consider a finite distribution of consumer types i, so that each type has a corre-
sponding weight wit. Consumers leave the market after making a purchase, and the weights
adjust deterministically. It is important to note that while the initial weights sum to unity∑

iwi0 = 1, but subsequent weights do not. The aggregate market shares are just the sum
of the type-specific market shares:

wi,t+1 = wit(1− si0t) (6)

sjt =
∑
j

witsijt (7)

The two dynamic relationships evolve in separate ways, as is indicated in Figure 4. The
distribution of consumer types wt evolves forwards over time; future values of the types dis-
tribution depend only the outside good share and the current distribution of consumer types.
The reservation value depends the current inclusive value and the next period reservation
value. The fact that these processes evolve separately, and in different directions helps to
simplify both the estimation and the firms’ pricing problem in the following sections.6

3.1 Other Details

In order to estimate this model it is necessary to choose an initial distribution wi0 for con-
sumer tastes αi. Once the initial distribution is pinned down, the future distribution is

6The model can be extended to include multiple purchases by expanding the space of consumer types.
This can be accomplished by discretizing consumer inventories vi0t, and the new type space is the product
of the existing type space and the space of consumer inventories. Rather than leave the market after making
a purchase, consumers transition to the “type” of consumer with the same tastes, but a different inventory
holding. This is omitted because it is not an important feature of the market for LCD televisions.

9



determined by the purchase decisions of consumers. Like in much of the literature, we
assume that tastes for individual product characteristics are independent and normally dis-
tributed. Over time, as consumers make purchases, the resulting distribution may no longer
be normally distributed.

When we assume that αi are distributed as independent normal random variables, tastes
can be broken up between the population average αk and the individual deviation vik:

αki = αk + σkvik

There are several ways to choose the random tastes and the corresponding population
weights (vi, wi0). The Monte-Carlo approach is to set wi0 = 1

ns
and then randomly sample vik

from the standard normal distribution. A better method is to choose the draws and weights
in accordance with some quadrature rule. This is particularly effective when the dimension
of integration (number of random coefficients) is low. Theoretically, this approach can be
thought about by approximating the function of interest with a high-order polynomial and
then integrating the polynomial exactly. In practice, it simply provides a set of points and
a set of weights (wi0, vi) in a non-random way. This approach is especially effective for
this type of problem because the integrand sijt is an analytic function, meaning it is well
approximated by a Taylor series, and it is also bounded between [0, 1], which guarantees that
the tails die off sufficiently fast.

This paper chooses the initial distribution of consumer types wi0 according to the Sparse-
Grids approach of Smolyak (1963). Heiss and Winschel (2008) determine an efficient way of
nesting quadrature rules for ML estimation of multinomial logit models. The authors find
that for three-dimensional logit-normal integrals, 87 quadrature points are more accurate
than 2500 quasi-random draws. By using the quadrature points provided on the authors’
website (http://www.sparse-grids.de), it is possible to accurately approximate a normal dis-
tribution of consumer tastes with a relatively small number of consumer types.

4 Estimation

The economic model imposes the following constraints:

sijt = exp[xjtα
x
i − α

p
i pjt + ξjt − vit + η] (8)

δit = log(
∑
j

exp[xjtα
x
i − α

p
i pjt + ξjt]) (9)

vit = log(exp(δit) + exp(βvi,t+1)) (10)

wi,t+1 = wi,t(1−
∑
j

sijt) (11)

sjt =
∑
i

wi,tsijt (12)
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Estimation adds two constraints.7 The first constraint is that the observed shares Sjt match
the predicted shares. The second constraint is that the demand shock ξjt is orthogonal
to some function of the observable variables xjt and the excluded instruments zjt, so that
Zjt = [zjt, xjt].

Sjt = sjt (13)

E[ξjtZjt] = 0 (14)

In the presence of over-identifying restrictions, it is not usually possible to solve (14) exactly.
Instead, estimation usually proceeds by choosing an appropriate weight matrix for the mo-
ment restrictions and minimizing a quadratic objective function via Generalized Method of
Moments (Hansen 1982).

The empirical likelihood (EL) estimator of Owen (1990) provides an alternative to GMM
methods. One way to think about EL is as an extension of Nonparametric Maximum Likeli-
hood Estimation (NPMLE) to moment condition models. The empirical likelihood estimator
re-interprets the moment condition by attaching a probability weight to each observation.
These weights, ρjt, are constructed so that equation (14) holds exactly. If each observation
in the dataset were distributed as an independent multinomial, then the corresponding likeli-
hood function would be l(ρ, θ) =

∑
∀j,t log ρjt. The resulting optimization problem is to find

a set of weights that maximizes the likelihood subject to the following additional constraints:∑
∀j,t

ρjtξjtZjt = 0 (15)∑
∀j,t

ρjt = 1 (16)

Empirical likelihood estimators provide a number of properties that are desirable to applied
researchers. Many of these properties are related to the fact that EL avoids estimating the
weighting matrix. The estimates derived from EL estimators have the same asymptotic
distribution as GMM estimators, but are higher order efficient (Newey and Smith 2004).
The appendix provides more details on the construction of the EL estimator. Conlon (2012)
provides an examination of the computational properties of empirical likelihood for static
demand models, and Kitamura (2006) provides a general survey of the EL literature.

In much of the literature, such as Gowrisankaran and Rysman (2009), Carranza (2007),
and Lee (2009), estimation follows a multi-step procedure that involves iterating over three
loops. The innermost loop involves solving a dynamic optimal stopping problem similar to
Rust (1987) for the value function. The middle loop consists of a modified version of the
contraction mapping in Berry, Levinsohn, and Pakes (1995) to find ξjt, and constructing
consumer expectations about the evolution of δit. The outer loop involves a nonlinear search
over parameters of a nonlinear (GMM) objective function formed from the moment condi-
tions (14). Such a method is often quite difficult to implement, and may take several days
to achieve convergence.

7This formulation of the problem nests the static problem of Berry, Levinsohn, and Pakes (1995). In that
problem, wi,t is fixed, and vit = 1 + exp[δit].
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This paper takes a different approach to estimation, and solves (8) - (16) directly using
the MPEC method of Su and Judd (2008). The MPEC method was later adapted to static
(and a simple dynamic) demand estimation problem by Dube, Fox, and Su (2009). The key
intuition of the MPEC approach is that instead of solving for equilibrium outcomes at each
iteration, these equilibrium outcomes can be viewed as constraints that only need to hold
at the optimum. For example, instead of iteratively solving for the value function for each
guess of the parameters, it is sufficient to ensure that (10) is satisfied at the final estimate θ̂.
The MPEC method works by using constrained optimization routines to directly solve the
system of nonlinear equations implied by the model. This is markedly different from other
approaches in the literature such as: Rust (1987), Hotz and Miller (1993), Berry, Levinsohn,
and Pakes (1995), Aguirregabiria and Mira (2007) which manipulate equations and solve
for parameters as implicit functions of other parameters in order to reduce the number of
parameters and eliminate the contstraints.

It is well established in the literature on optimization (Nocedal and Wright (2006) and
Boyd and Vandenberghe (2008)) that sparse and convex problems are easier to solve than
dense and non-convex problems. Fortunately, (8)-(14) are mostly convex equations8 and
reasonably sparse. Sparsity refers to the resulting Hessian matrix of an optimization problem.
It is easy to see that a problem is sparse when many variables only enter one or two equations
(like wit) or enter the model linearly. The “trick” in many MPEC problems is how to re-
write the problem in a way which makes it more sparse. In this case, the “trick” is to
replace the value function with an extra variable, vit. The difficulty of the MPEC method
(and constrained optimization in general) depends more on convexity and sparsity than the
number of unknown parameters. As written, the model implies an extremely large number
of parameters (vit, wit, sijt, δit, ξjt, αi), which would make it nearly impossible to solve using
traditional nested fixed-point methods.

The advantage of the MPEC formulation for the dynamic demand problem is twofold.
The first advantage is that it is substantially easier from a computational perspective. In
fact, the dynamic demand problem is not appreciably harder than the static demand problem
and can be solved in about an hour. One way to see this relationship is to recognize that the
static problem is just the special case of the dynamic problem where vi,t+1 = 0 in (10). The
second advantage of the MPEC method is that it allows us to define the dynamic quantities
directly as extra variables. Rather than implicitly solving the value function, the dynamic
behavior is just a set of constraints on the (vit, wit) variables. Moreover, these constraints
help exploit the sparsity, since vit depends only on the one period ahead value vi,t+1 and wi,t
depends only on the one period lagged value wi,t. It should be pointed out out that, this
system of equations represents an exact solution to the value function, and does not require

8Note: For an optimization problem to be convex, it must have only affine equalities. This problem
has several nonlinear equality constraints, although they are themselves convex. For example, the logit
inclusive value: log

∑
exp(·) is convex (Boyd and Vandenberghe 2008). The share equation is the ratio of

two exponentials evijt

evit , which are convex, but the ratio is not. This is not enough to guarantee that the
overall optimization is globally convex, and hence has a single unique optimum that can be found in constant
time. However, these equations are well behaved enough that it is usually possible to find the optimum using
off the shelf nonlinear solveers.
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approximation on a grid or via polynomials. Additionally, it makes it possible to estimate
the model without additional functional form assumptions on beliefs or the evolution of the
state space, and without assuming that the inclusive value encodes all of the information
about a particular state.

The overall optimization problem is:

max
(ρjt,vit,wit,sijt,δit,ξjt,αi)

∑
j,t

log ρj,t s.t.

sijt =
exjtα

x
i −α

p
i pjt+ξjt

evit+γit

sjt =
∑
i

wi,tsijt

wi,t+1 = wi,t(1−
∑
j

sijt)

exp[δit] =
∑
j

exp[xjtα
x
i − α

p
i pjt + ξjt])

vit = log(exp(δit) + exp(βvi,t+1)) + γit

Sjt = sjt∑
∀j,t

ρjtξjtZjt = 0∑
∀j,t

ρjt = 1

5 Pricing

An important aspect of oligopoly models is that prices are not exogenous, but rather the re-
sult of the profit-maximizing behavior of firms. There is a large literature on static oligopoly
models, where inferred equilibrium behavior of firms is used to recover markups and costs.
The idea behind this is that when observed prices represent equilibrium outcomes of a static
differentiated products Bertrand pricing game, there is a one to one relationship between
prices and costs that can be inverted. This relationship is described in detail in Berry (1994)
and Nevo (2000). This paper takes a different approach to the supply-side decisions of firms.
An important feature of the dataset is that marginal cost data are observable, so that costs
do not need to be recovered from the pricing equilibrium.9

Instead, observed costs are used as an input into several counterfactual pricing equilibria.
The goal is to construct counterfactual prices from scenarios where firms consider some
aspects of dynamic consumer behavior but not others. By isolating different aspects of
consumer behavior, it is possible to understand why prices are low (or what would make

9Zhao (2008) develops a novel procedure based on Berry and Pakes (2000) that exploits the orthogonality
of the dynamic pricing Euler equation with some instruments to recover costs without explicitly solving the
pricing problem.
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them higher). We re-compute markups when firms account for changes in the distribution of
types when setting prices, but not consumers’ value of waiting (and vice versa). Furthermore,
it is possible to ask what prices would be in a world where consumers had no option to wait,
or one in which the distribution of consumer types was fixed over time. By comparing prices
in these scenarios to the observed prices (and to the other scenarios) it is possible to measure
the extent to which different types of dynamic behavior influence equilibrium prices.

The next subsection reviews the price setting behavior of a static oligopolist. This pro-
vides an important building block and intuition for some of the counterfactual experiments.
The section after that examines pricing setting behavior in a dynamic oligopoly setting.
Under some simplifying assumptions, and by exploiting the structure of the demand model
which lets us separate the value of waiting v from the distribution of consumer types w,
the resulting equilibrium is deterministic and straightforward. The final subsection applies
the static and dynamic equilibrium pricing strategies to different scenarios for consumer
behavior.

5.1 Static Pricing

It is helpful to define the J × J matrix of same-brand price elasticities, where Jg represents
the set of products owned by multi-product firm g.

Ajk =
∂skt
∂pjτ

when (j, k) ∈ Jg, t = τ 0 o.w.

Assume there is a fixed population of consumers M , then firms choose a set of prices pjt for
products they own Jg in order to maximize profits by examining the FOC:

max
pjt∈Jg

πgt = max
pj∈Jg

∑
j∈Ag

M(pjt − cjt)sjt(pt, θ)

⇒ sjt =
∑
k∈Jg

(pkt − ckt)
∂skt
∂pjt

= A(p− c)

⇒ p = c + A−1s(p, θ)

The extension of this approach to multiple periods is not trivial. At the minimum, oligopolist
firms play a repeated game over several periods, and static Nash-Bertrand is only one possible
outcome. Firms can condition their pricing strategy to depend on actions of other firms.
For example, firms may collude in some periods and engage in price wars in other periods.
The dynamic nature of the consumer’s problem makes this more challenging, since sales in
period t depend not only on s(pt, θ, vt) but also on beliefs about the future vt.

5.2 Dynamic Pricing

Firms, subscripted by g, now solve a more challenging problem where σ̃ is a state variable
that contains information about the past history of prices and beliefs by firms and con-
sumers about which strategy is being played. The additional challenge is that firms are now
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maximizing a discounted stream of future profits Vg with discount factor βm.

Vg(σ̃t) = max
pjt∈Ag

Eπgt(σ̃t,pt) + βm

∫
Vg(σ̃t+1)Pr(σ̃t+1|σ̃t,pt) (17)

The demand model is fully described by a set of (αi, ξjt, wit, vit). If we know the set of
consumer tastes and product quality θ = (ξ, αi), then demand is described in each period
by (vt, wt), because vit is a sufficient statistic at time t for a consumer’s beliefs about the
future. Moreover, both vt and wt evolve in a simple deterministic fashion. We assume that
firms set prices based only on the demand state, and no other factors. More formally,

Assumption 3. The state variable σ̃ = (vt, wt, ct) where vt and wt are the set of all vit and
wit ∀i respectively and ct is the cost vector for all products j at time t.

Assumption 4. Firms know cjt, ξjt ∀j, t at time t = 0, as well as αi.

Assumption 4 makes it possible to suppress ct from the state space and instead include it
in the t subscript on the value function. In the LCD TV industry, it is probably reasonable
to assume that firms are able to accurately forecast future costs. This is because costs are
driven primarily by panel prices, and panel prices decline in a predictable way through the
engineering process. The hedonic marginal cost regression provides empirical support for
this assumption in Table 5.

Assumption 3 is a stronger assumption, which prevents firms from conditioning their
actions on the actions of other firms, or on the full history of the demand state. This makes
it possible to compute pricing equilibria in a straightforward way, although at the risk of
ruling some potentially interesting behavior. Firms essentially respond to the demand state,
and don’t worry about inter-temporal effects of their decisions or their competitors decisions,
except as they influence the demand state.

These assumptions make it possible to simplify the dynamic problem that firms solve in
(17) so that:

Vgt(vt, wt) = max
pjt∈Ag

∑
j∈Ag

(pjt − cjt) · sjt(pt, vt, wt) + βmVg,t+1(vt+1, wt+1) ∀g, t (18)

wi,t+1 = wi,tsi0t = wi,t
eδit(pt)

evit
(19)

vi,t = log (exp(δit(pt) + exp(βvi,t+1)) (20)

The key aspect of this formulation of the problem is that firms are required only to choose
prices in each period. Once prices are chosen, all other variables respond in a deterministic
way. Moreover, the state variables depend on prices only through the exponentiated inclusive
value, which has a very simple price derivative, and guarantees that the states are smooth
in prices. Moreover

∂ exp[δit]

∂pjt
= −αpi

∂ exp[δit]

∂pjτ
= 0 when τ 6= t
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It is possible to construct a sequence of prices, reservation utilities, and a distribution of
consumer types (pt, vt, wt) that satisfy (18) -(20) and define a Markov Perfect Equilibrium.

There are some further simplications, that can also be helpful to consider. If vit was not
affected by the prices firms set in later periods, the distribution of consumer types would
be the only state variable (in addition to costs) and the price setting game in each period
t + 1 would be a strict subgame of the period t game, and the resulting equilibrium could
be solved by backward induction. Likewise if the distribution of consumer types were fixed
over time, so that vit were the only state variable, then the game in each period t− 1 would
be a strict subgame of the period t game and an equilibrium could be solved by forward
induction. The intuition behind this is suggested in Figure 4.

5.3 Constructing Counterfactual Pricing Equilibria

The goal of the counterfactual experiments is to understand how prices are affected by
different aspects of dynamic consumer behavior. The advantage of the setup in (18)-(20) is
that the value of waiting is captured by vit and the distribution of consumer types is captured
separately by wit. This enables us to consider the effect of both of these factors separately
when trying to understand Coasian price dynamics. That is, we could consider a world where
consumers correctly incorporate the value of waiting when making a decision, but where the
distribution of consumer types is fixed. Likewise, we can consider a world where firms engage
in “skimming” against naive consumers. The differences in prices between these two cases
and the actual prices, gives us an idea what the overall pricing impact is of these two aspects
of Coasian dynamics.

Mechanically, these quantities affect prices in different ways and have different economic
interpretations. distribution of consumer types wt determines which consumers are left in
the market, which enters demand linearly sjt =

∑
iwitsijt. The other effect of wit is that

firms take into account the effect that prices today have on the distribution of consumer
types tomorrow wi,t+1 through (19). Likewise vit directly affects the outside good share

today si0t = eδit(pt)

evit
(but not relative marketshares of products), and future prices determine

earlier values of vit through (20).
These relationships suggest some counterfactual experiments. The goal of the counter-

factual experiments is to understand how much higher (or lower) prices would be if firms did
not account for these aspects of consumer behavior. In order to make this more clear, these
aspects are broken out into three parts. The first part is the dynamic or “indirect” effect.
This looks at deviations between a firm that statically set prices against residual demand
each period, and a firm who fully incorporated the effect that prices had on other periods.
Consider the effects of a price increase in period t, it increases the value of the next period
t+ 1, since more consumers remain in the market, and it increases the value of the previous
period t−1 since it makes waiting until period t look less attractive. This leads us to expect
that firms which do not account for these dynamic effects will price lower than firms which
do. This is addressed in experiment 1.

The second aspect is that the option value of waiting influences the prices that firms
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charge. A high value of waiting means that firms have less ability to extract surplus from
consumers. We know from (20) that a high value of waiting might be due to lower prices
or higher quality in the future (through the inclusive value). We expect that the option to
wait should be most valuable when there are substantial changes in the inclusive value, that
is when ∆δit = exp[δit]− β exp[δi,t+1] is large. As an alternative, we can consider consumers
who cannot wait: vi,t+1 = 0 (or are extremely impatient: β = 0) so that vit = δit. We can
then compare the prices firms would charge facing these consumers to the observed prices in
order to understand how the option to wait affects prices. This is explored in experiment 2.

The third aspect is that the distribution of consumer types influences the prices that firms
charge. As high value consumers make purchases, they leave the market and the residual
demand curve becomes more elastic over time. This means that over time, the amount
of surplus left in the market should be decreasing.10 As the amount of potential surplus
declines over time, this should lead firms to set lower prices. By comparing the observed
prices to those constructed from a world where the distribution of consumer types does not
change over time (that is consumers who make purchases do not leave the market, but are
“reborn” next period), it is possible to understand the effect that changes in the distribution
of consumer types have on prices. This is explored in experiment 3.

It is also important to mention that we don’t need to make specific assumptions on the
beliefs of consumers in addition to the model of dynamic demand that has already been
specified. This is because the vit are the beliefs of consumers. It is also important to
understand that our markov assumption means we do not worry about the beliefs of firms,
rather firms wake up each period and respond to the demand state (vit, wit).
Experiment 1: Firms engage in static pricing.
This experiment considers the pricing decision where firms correctly observe the state each
period (vit, wit) but do not take into account how prices affect demand in other periods.
However, in this experiment, only the initial distribution of types w0 is determined by the
demand model. Now, the reservation values vit depend on the observed price sequence, and
(vit, wit) are allowed to adjust according to the demand model. However, firms do not account
for their effects on this adjustment. For a given guess of vt markups can be computed the
same way they are in the static model. The pricing equilibrium is defined by the system
of equations system of equations below, where A represents the proper ownership-elasticity
matrix for (vt, wt):

pt = ct + At(vt, wt)
−1st(pt, vt, wt, θ)

wi,t+1 = wi,tsi0t

vi,t = ln (exp(δit(pt) + exp(βvi,t+1))

Experiment 2: Consumers are myopic.
Consumers are myopic and do not realize that they can make a purchase in a later period
so that vi,t+1 = 0 everywhere. The initial distribution of consumers wi0 is used as a starting
point and firms set prices in response to the distribution of consumer types each period.

10There is a potential source of new “surplus” for firms because marginal costs are also declining over
time, but not for consumers.
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Additionally, when setting prices firms consider the distribution of consumer types in the
future. The resulting pricing equilibrium is subgame perfect and can be solved by induction.

vit = 0 ∀i, t
wi,t+1 = wi,tsi0t

The goal of experiments 2 is to measure how much higher prices would be if consumer were
myopic. This experiment simulates a sequence of prices where the rest of the model dynamics
take place, but where consumers make myopic purchase decisions, and leave the market after
making a purchase.
Experiment 3: Distribution of Consumer Types is Fixed. Firms account for
inter-temporal effects.
In this experiment the distribution of consumer types is fixed at wi0, but consumers have
beliefs about the future vit that are consistent with the prices set by firms. Firms set prices
each period in response to the (vit, wi0) and incorporate how prices affect reservation values
vit. Prices are the result of a subgame perfect equilibrium defined by the following system
of equations, and can be solved by induction, although once again we must numerically
interpolate the firm’s value function Vgt(vt, wt).

wit = wi0 ∀t
vi,t = log (exp(δit(pt) + exp(βvi,t+1))

6 Empirical Results

The demand model is estimated via the empirical likelihood method described in a previous
section. Three specifications are reported: a static model similar to Berry, Levinsohn, and
Pakes (1995) and the dynamic model with perfect foresight γit.

11 Both specifications are esti-
mated from the same moment condition E[ξjtzjt] = 0, and the same set of instruments. The
instruments are: cost shifters from the marginal cost data, BLP-style instruments (average
characteristics of other brand products in the same market), and non-price xjt explanatory
variables. All models are estimated using the MPEC method and the KNITRO solver,
a modern interior-point solver that handles both constrained and unconstrained problems
(Byrd, Nocedal, and Waltz 2006). As reported in Table 6, the static model implies dramat-
ically different price sensitivities from the dynamic model, and consumers appear to be far
more price sensitive. This bias is well documented in the empirical literature on dynamic
durable goods models, and is due to the fact that the static model does not account for
consumers who do not purchase the good in the current period in order to purchase the
good later. In a comparison of empirical likelihood values (or by constructing the ELR test
statistic) we fail to reject the model without upgrades when compared to the model with
upgrades. Thus the model without upgrades is the preferred specification.

11The model without perfect foresight is estimated as a robustness check and gives extremely similar
results, and small values for γit
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The implied price elasticities and substitution probabilities are reported in Table 7. The
first two rows are the 95% confidence intervals for average own-price elasticities. The average
own price elasticity is E[

∂sjt
∂pjt

], where the expectation is computed over the empirical likelihood

probability weights. The 95% confidence interval is constructed by inverting the χ2 test
statistic. Also in Table 7, the following experiment is conducted, the price of a 32” HD
Sony TV in 2008Q1 is increased by 10% from $890 to $980. All expectations about the
future are held constant. That is, vit is held fixed for all other periods. This represents a
one time shock akin to a pricing mistake where all retailers mislabel the price of the unit.
The table reports how many consumers substitute to another Sony TV today, how many
substitute to the same size and resolution TV today, how many buy the same Sony unit
in the next period, and how many buy some other product (either now or in the future).
The same experiment is repeated for the 32” HD Vizio TV in the same period where the
price is increased from $596 to $655. For both TV’s, few consumers substitute to the same
brand television in a different period, at least when compared with an arbitrary consumer.
However, overall substitution to later periods is quite large. There are two ways to interpret
this finding. One interpretation is that because the market is fairly competitive firms do not
compete closely with their own products over time. The other interpretation is that in the
absence of brand specific tastes, and in the presence of a logit error, we shouldn’t expect
strong inter-temporal correlation among tastes for brand. Although the Vizio TV sells more
units than the Sony 240,000 to 170,000, Vizio faces more price sensitive consumers and earns
less of a brand margin, whereas Sony consumers are more likely to stay with the brand in
the event of a price increase.

6.1 Counterfactual Experiments

The results of the experiments (in terms of sales-weighted average prices) are reported in
Table 9 and in Figure 4.

The figure shows pricing under several different scenarios. The first scenario is that of a
constant markup. This would be akin to costs changing, but no characteristics of demand or
the competitive environment changing. Not shown on the figure is the case of static pricing.
Static pricing is a good approximation in later periods when margins are lower, but does not
fit the data particularly well in the early periods. In the later periods, static pricing would
lead to prices that are only about 3%− 5% higher than the ones we see in the data in 2009.
This gives some indications (at least in the later periods when margins are low) that firms
are not considering the effect that prices today have on the demand state. In part, this is
a feature of the logit property of the model, since consumers have no “brand loyalty” from
period to period.

Experiment 1 seeks to answer the question, how much higher/lower than the observed
prices would prices be if firms did not account for the inter-temporal effects of pricing deci-
sions. Theory suggests that when firms do not account for the fact that higher prices improve
the profitability both of later periods, because the number of consumers in the future pop-
ulation increases, and the profitability of earlier periods since higher prices in the future
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reduce value of waiting. In the case of experiment 1, the prices are quite similar, but not
always lower than the observed prices. One potential explanation is that the pricing model
assumes the costs are perfectly measured, and there may be unobserved cost variation. Also,
the pricing model assumes away not only the dynamic effects on consumers, but also the
dynamic effects on other firms.

Experiment 2 is similar to experiment 1 except that consumers are also myopic, that is
vi,t+1 = 0. This produces prices that are initially substantially higher (around 30%), but
the difference between the predicted prices and the observed prices declines over time. This
makes sense if the consumer’s value of waiting declines over time. For consumers who prefer
small to medium sized televisions, price declines towards the end of the sample are small,
and the value of waiting is declining. Thus the gap between a consumer with no value of
waiting and one who has a declining value of waiting narrows over time.

Experiment 3 is similar to experiment 1 except that while consumers are able to anticipate
the future, the distribution of consumer types is fixed over time. Intuition suggests that
firms will sell to high-value consumers over and over. This is a bit more complicated than
the traditional static setting, because costs fall in each period. In this case, prices fall over
time, but fall more quickly early on when costs are also falling fast. In the later periods
when costs are falling more slowly (and there is less incentive to wait) prices also fall more
slowly. Also, unlike in the observed data, prices fall more slowly than costs overall.

When compared to theoretical predictions for the monopoly case, there are some impor-
tant differences in oligopoly markets. The distribution of consumer types determines the
amount of surplus remaining in the market, which is not reduced by competition. Counter-
factual experiments demonstrate that were it not for changes in the distribution of consumers
over time (the price discrimination motive) prices might be around 50% higher than they
are today. Similarly, the option value to wait limits the amount of surplus firms are able
to extract, but so do competitors. In the absence of the option value prices would be only
around 15-20% higher. Both competition and the logit error may reduce the extent to which
firms engage in inter-temporal competition with their own products. Empirically, firms do
not seem to take into account the effect that prices have on other periods, or these effects
are small relative to the other effects, and unlike in the monopoly case, static pricing does
not appear to be bad approximation.

7 Conclusion

This paper adapts the existing methodology for dynamic models of differentiated products
to the MPEC framework. In this framework, dynamic consumer behavior places only a few
simple constraints on the static demand model. This makes it possible to estimate the model
directly without making any additional functional form assumptions or the inclusive value
sufficiency assumption. Empirical likelihood estimators can be adapted quite naturally to
the MPEC framework. The resulting estimator is likely to be more efficient, and easier to
compute than standard approaches based on GMM estimators and fixed point algorithms.

In addition to improving the statistical and computational properties, this approach
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simplifies the economics as well. It is possible to estimate the model directly without making
additional functional form assumptions or the inclusive value sufficiency assumption. In
industries where repeat purchases are not an important aspect of consumer demand, it is
possible to consider the value of waiting as an additional variable. When this is the case,
it is possible to identify the changes in the distribution of consumer types separately from
the value of waiting. Separating these quantities simplifies the dynamic pricing problem
firms face, and makes it possible to quantify how the value of waiting and changes in the
distribution of consumer types differently effect the prices we observe in equilibrium.

This paper provides a simple framework for beginning to understand the dynamics of
supply and demand in differentiated products oligopoly settings. However, much remains to
be done. For example, this approach does not consider the dynamic effects that firms and
prices have on each other (such as collusion, price-fixing, etc.) though these are often an
interesting and important aspect of markets with high-technology products and fast price
declines. Also, the pricing problem uses the simplifying assumption that consumers are able
to exactly predict their expected utility of future states. Likewise, both supply and demand
exploit the assumption that there are no repeat purchases. These assumptions are perhaps
reasonable over a short period of time in the LCD TV industry, but may be more problematic
when adapted to other industries.
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Quarter # Prod (HD) # Prod (FHD) Total

2006q1 59 8 67
2006q2 61 14 75
2006q3 66 22 88
2006q4 70 28 98
2007q1 77 26 103
2007q2 85 39 124
2007q3 82 49 131
2007q4 78 50 128
2008q1 72 52 124
2008q2 65 63 128
2008q3 66 64 130
2008q4 49 60 109
2009q1 45 56 101
Total 875 531 1406

Table 1: Number of Products By Period

Quarter 26 32 37 40 42 46 47 52 55 57 65

2006q1 11 16 13 6 5 1 1 0 0 1 1
2006q2 13 17 13 9 5 4 2 0 0 2 1
2006q3 12 18 15 9 7 9 3 2 0 2 1
2006q4 12 18 19 10 10 9 6 3 0 2 1
2007q1 15 20 18 9 15 9 5 3 0 2 1
2007q2 16 20 23 10 22 11 9 5 0 2 1
2007q3 18 20 22 10 24 11 9 9 0 3 2
2007q4 17 20 21 10 23 11 10 9 0 3 2
2008q1 17 21 21 10 22 10 9 9 0 3 1
2008q2 15 24 21 10 26 9 9 10 0 2 1
2008q3 14 26 25 9 24 9 7 8 2 1 1
2008q4 15 23 19 7 18 7 7 9 2 0 1
2009q1 14 22 17 5 16 8 5 9 3 0 1

Table 2: Number of Products By Size for Selected Segments
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∆p (1) (2) (3) (4)

∆c 1.962*** 1.498*** 1.808*** 1.483***
(0.241) (0.268) (0.226) (0.264)

Constant -20.71** 2.686 5.672 13.80
(9.820) (10.32) (13.92) (16.09)

Observations 1,218 1,218 1,218 1,218
R-squared 0.183 0.225 0.219 0.243
Panel FE NO YES NO YES
Manuf FE NO NO YES YES

Table 3: Pass-through Regressions

Input Q4 2007 Q1 2008

LCD Module Price in Previous Quarter 810.31 789.91
Inverter 0.00 0.00
NTSC Tuner 5.16 0.00
ATSC Tuner Demod 21.85 5.40
Image Processing 21.38 21.32
Audio Processing 10.30 8.60
Power 20.02 25.00
Other Electronics 29.83 28.48
PCB Mechanical 5.76 5.00
Other Mechanical 92.24 85.30
Packaging&Accessories 16.09 16.04
Royalties 10.00 10.00
Labor Overhead 62.58 59.70
Warranty for 12-18 Months 31.29 29.85
USA Import Duty 0.00 0.00
Freight to USA 6.52 6.46
Insurance 4.57 4.36
Handling & Surface 8.04 7.67
Ex-Hub 1155.92 1103.09
Brand Margin (%) 21% 24%
Reseller Margin (%) 25% 27%
Average Street Price 1954.16 1976.00

Table 4: Cost Breakdown Example
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log(Price) (1) (2) (3) (4)
size 0.0519*** 0.0498*** 0.0487*** 0.0496***

(0.0015) (0.00094) (0.00074) (0.00071)

size2 0.000978*** 0.000867*** 0.000749*** 0.000744***
(0.00010) (0.000063) (0.000051) (0.000048)

FHD 0.0861*** 0.262*** 0.231*** 0.223***
(0.025) (0.016) (0.013) (0.012)

trend -0.0828*** -0.0838*** -0.0890***
(0.0018) (0.0014) (0.0022)

Constant 4.936*** 5.577*** 5.519*** 5.585***
(0.051) (0.035) (0.039) (0.041)

Fixed Effects x x Manuf Manuf + Time
Observations 1406 1406 1406 1406
R2 0.66 0.87 0.92 0.93

Table 5: Hedonic Regression for Prices

log(Cost) (1) (2) (3)
size 0.0678*** 0.0573*** 0.0551***

(0.0080) (0.0028) (0.0018)

size2 -0.000205** -0.0000959*** -0.0000714***
(0.000094) (0.000033) (0.000021)

FHD 0.0427 0.0946*** 0.104***
(0.044) (0.015) (0.0097)

trend -0.0379*** -0.0413***
(0.00064) (0.0010)

Constant 3.980*** 4.841*** 5.138***
(0.16) (0.058) (0.045)

Fixed Effects x x Time
Observations 506 506 506
R2 0.74 0.97 0.99

Table 6: Hedonic Regression for Marginal Costs
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Static Dynamic

Price -.0034 -0.0291
FHD 2.2423 1.8412
Size -0.0251 0.0184
Size2 -.0006 -0.002
σp 0.0009 0.0059
σs 0.0113 0.00162
σFHD 0.0233 0.0621
FE Manuf + Q4 Manuf + Q4
EL 11438 10941

Table 7: Demand Estimates

Sony 32in HD Vizio 32in HD

Own Elasticity (Lower) -0.83 -0.94
Own Elasticity (Upper) -0.61 -0.72
Same Model 48% 14%
Same Brand-Period 11% 10%
Same Period-Other Brand 27% 39%
Same Brand-Other Period 4% 6%
Other-Other 10% 31%

Table 8: Elasticities and Product Substitution

25th percentile 75th percentile
δit only .62 .89
3 Term Chebyshev .81 .97

Table 9: R2 for Regressions of Rit on f(δit)

Q1’06 Q2’06 Q3’06 Q4’06 Q1’07 Q2’07 Q3’07 Q4’07 Q1’08 Q2’08 Q3’08 Q4’08
Cost 843 810 702 601 568 523 517 529 505 502 484 428
Price 1437 1345 1172 899 868 795 727 673 698 662 622 518
Experiment 1 1393 1266 1170 897 848 769 708 678 647 644 621 522
Experiment 3 1453 1373 1191 985 916 830 808 814 765 749 691 611
Experiment 5 1505 1446 1254 1073 1014 934 923 945 902 896 864 764

Table 10: Counterfactual Experiments for 32” HD TV
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Figure 2: Comparison of Penetration Implied by Dataset (assuming no upgrades) with House-
hold Survey Data
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Figure 3: Panel Price as a Share of Overall Costs
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Figure 4: Timing of Dynamic Problem

Figure 5: Empirical Likelihood Confidence Interval Construction
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Figure 6: Counterfactual Pricing Under Different Scenarios
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Appendix

Static Model

We could imagine a world where in every period consumers choose to purchase the product
that gives them the highest utility, where dit denotes the decision of consumer i in period t
and uijt denotes the utility consumer i receives from choosing product j in period t. Because
utility is ordinal, not cardinal, it is standard to normalize the mean utility of the outside
good to be zero.

dit = arg max
j∈{0,Jt}

uijt

uijt = αxi xjt − α
p
i pjt + ξjt + εijt

ui0t = εi0t

The key addition is the random εijt term, this represents an idiosyncratic shock to the
consumer’s utility. There are two ways to understand this, it might incorporate actual
shocks to an individual’s utility (it might fit perfectly in some space, the one the consumer
is standing in front of when they make a decision, etc.), or it may be some purely statistical
error that provides smoothness. When the random term is Type I Extreme Value and IID
over all (i, j, t) then consumer choice probabilities take on the well known logit form:

sijt =
exp[αxi xjt − α

p
i pjt + ξjt]

1 +
∑

k∈Jt exp[αxi xkt − α
p
i pkt + ξkt]

The goal of estimation is typically to identify the distribution of the tastes αi by match-
ing observed shares to those predicted by the model. We’re typically interested in some
parametric distribution f(αi|θ) subject to the nuisance parameters ξ

sjt =

∫
sijt(αi, ξ)f(αi|θ)

There are several problems in using a traditional static differentiated products model to
study the purchases of TV’s. The core problem is that the static model fails to account for
the fact that there are tradeoffs between purchasing a product today, and waiting until later.

One aspect is that the utility, uijt of buying a product may continue for several periods
after the purchase is made, rather than all enjoyed immediately. We might consider uijt to
be the present discount value of the flow of future utility from owning the product. But
simple adjustments like this are not sufficient. When we consider the outside option 0, as
representing “waiting until later”, then it should be clear that the assumption E[ui0t] = 0 is
incorrect, especially if we know tomorrow’s products will be better and less expensive than
today’s products, or if a consumer has already purchased a product in the previous period.12

12One approach in the literature for handling this problem is adding a time trend to the consumer’s utility
function. An example of this is (CITE). This is ad-hoc at best unless we really believe that consumers are
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The other problem is that in order to identify f(αi|θ) we typically make the assumption
that the distribution is constant over time, and use repeated observations of the cross section
for identification. This might be appropriate for studying durable consumer goods in mar-
kets with stable characteristics and prices such as washing machines or refrigerators where
replacement is driven on a fixed interval or by random failures. However, in markets where
prices and product characteristics are rapidly evolving, we should worry that the individuals
who purchase the product in early periods when prices are high look markedly different from
the individuals who purchase the product in later periods when prices are low.

Empirical Likelihood MPEC

The typical exposition follows Kitamura (2006), which provides an extensive and accessible
survey of the EL literature. Assume data {zi}ni=1 are distributed IID according to unknown
measure µ. The econometric model gives us some moment conditions. The moment condi-
tions, g(z, θ) ∈ Rq may be scalar valued (q = 1) or vector valued (q > 1).

E[g(zi, θ)] =

∫
g(z, θ)dµ = 0, θ ∈ Θ ∈ Rk

We can assume (w.l.o.g.) the existence of a nonparametric (multinomial) (log) likelihood
function. Then, we search for a measure (set of probability weights) (p1, . . . , pn) ∈ ∆ within
the unit simplex, where each pi corresponds to weight of each observed zi in the data. These
weights are then manipulated so that the moment conditions hold exactly. The empirical
likelihood estimator is defined as the solution to the following optimization problem:

θ̂EL = arg max
θ,p1,...,pn

lNP (θ) =
n∑
i=1

log pi s.t.
n∑
i=1

pig(zi, θ) = 0, and (p1, . . . , pn) ∈ ∆

EL offers a different interpretation of moment condition models. While GMM asks, “How
close (in a space defined by some weight matrix) can I get the moments of my model to match
the moments of my data?”; EL asks, “How unusual a draw from the multinomial distribution
of data would my data represent if my moment conditions held exactly?”. EL and GMM
produce the same asymptotic distribution. As a limiting case, in a model without over-
identifying restrictions (where the maximized GMM objective is zero), the optimal weights
are the empirical weights 1

n
and the EL objective function would be −n log n.

EL has a number of advantages that make it attractive to applied researchers. Most of
these advantages are due to the fact that EL avoids estimating the GMM weighting matrix.
There is a large literature on why estimating the weight matrix can be difficult, and when
it can lead to problems. An well-known example is Altonji and Segal (1996) who show
that the optimal weighting matrix used in Abowd and Card (1989) exhibits bias as the
number of moments increases and as moments become more correlated. Newey and Smith
(2004) provide formal results to show that the source of the bias comes from the correlation

becoming unhappier over time.
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of moments with their Jacobian (especially in the case of endogeneity), and the weighting
matrix. They also show that generalized empirical likelihood estimators do not exhibit this
bias and are higher-order efficient. Conlon (2012) shows that in Monte-Carlo experiments
for the static demand problem of Berry, Levinsohn, and Pakes (1995) EL exhibits less bias
and tighter confidence intervals than GMM.

The principal reason that empirical likelihood methods are not more popular, is that they
are believed to be computationally difficult relative to GMM. Previous approaches generally
focus on the unconstrained dual problem, which is appropriate for solving linear models, but
becomes challenging when solving nonlinear models:

θ̂EL = arg max
θ∈Θ

lNP (θ) = arg max
θ∈Θ

min
λ∈Rq
−

n∑
i=1

log(1 + λ′g(zi, θ))

An additional advantage of the MPEC method is that the constrained version of EL is
no more difficult to estimate than GMM, and in many cases easier. Conlon (2012) also
demonstrates how the MPEC approach of Su and Judd (2008) and Dube, Fox, and Su (2009)
can be combined with the EL estimator and applied to the demand estimation problem of
Berry, Levinsohn, and Pakes (1995). The resulting constrained optimization problem can be
written as:

arg max
p,ξ,θ,w,R

∑
j,t

log pjt s.t.
∑
j,t

pjtξjtzjt = 0 and Sjt = sjt(ξ, θ) and C(R,w, θ, ξ) = 0 (21)

By combining this objective and constraints with the constraints from the dynamic durable
goods problem C(R,w, θ, ξ) = 0 in (8)-(10), we can construct a one-step EL estimator.

Empirical Likelihood/MPEC Inference

Since the MPEC method represents a different computational algorithm, rather than a dif-
ferent statistical estimator, inference can proceed exactly as it does in the fixed point case. In
the example of the static demand estimation problem, it is well known that the asymptotic
standard errors depend on D = E ∂

∂θ
g(zjt, θ) and S = E[g(zjt, θ)g(zjt, θ)

′]−1

√
n(θ̂ − θ) →d N(0, D′S−1D)

g(zjt, ξ, θ) = ξjt(θ)× zjt
dg

dθ
=

∂g

∂θ
+
∂g

∂ξ
· ∂ξ(θ)
∂θ

=
∂ξ(θ)

∂θ
× zjt (22)

A small challenge is that ∂ξ(θ)
∂θ

is not directly defined in the constrained problem, because ξ
does not directly depend on θ. In the traditional fixed-point/contraction mapping approach
this is the gradient of the contraction mapping, but must generally be computed numeri-
cally. The fixed point approach provides the derivative of ξ along the manifold of the share
constraint. To perform inference in the MPEC framework, there are two options. One is
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to use the fixed-point approach to compute standard errors after estimation is done this is
what Dube, Fox, and Su (2009) implement in their MPEC-GMM routine, the other is to
use the results of MPEC estimation and the implicit function theorem to compute the ap-
propriate objects for computing standard errors as suggested by Su and Judd (2008). As an
alternative, Su and Judd (2008) recommend a bootstrap procedure for maximum likelihood
problems.

As the model becomes more complicated and the parameter space expands, implementing
the fixed point approach for a dynamic model such as Gowrisankaran and Rysman (2009) can

become more complicated. One way to see this is that it requires computing ∇θg =
∂g(zjt,θ)

∂θ

along the manifold defined by a number of additional constraints. Likewise, it might require
several iterative applications of the implicit function theorem to define the standard errors.

Empirical Likelihood admits the same form of asymptotic distribution as GMM, where
V = D′S−1D, except that D and S are computed under the empirical likelihood weights pjt
rather than the empirical weights 1

n
, in order to obtain the higher order efficiency property. It

is possible to construct the standard errors using the same methodology described above for
the GMM case. However, empirical likelihood presents an alternate solution to this problem,
whereby we can use the empirical likelihood ratio test statistic. The ELR test statistic
is computed as follows. Estimate an unrestricted model and compute the corresponding
empirical likelihood lEL(θ̂). Then estimate a model with a linear restriction on the parameter
R(θ) = 0 and call this l(θ̂0). Then we can construct the ELR test statistic, where r is the
dimension of R.

−2(l(θ̂0)− l(θ̂EL)) ∼ χ2
r

We can directly test for significance using this test statistic. Since the test statistic is just a
χ2 with r degrees of freedom we can easily compute the critical value cα for some significance
level, and construct a confidence interval for θk an element of θ by inverting the test:

[θk, θ
k
] = min θk/max θ̂k ∈ N(θ̂EL) s.t. l(θ) ≥ l(θ̂EL)− 2cα

We search for the largest and smallest value of the element of interest θk that produces an
EL objective value close enough to the unrestricted value. This is demonstrated graphically
in Figure 6. This procedure must be repeated for each parameter for which we want to
construct a confidence interval. An advantage is that constructing the confidence interval by
inverting the test often has better statistical properties than confidence regions constructed
from the asymptotic distribution (Kitamura 2006)13.

13I need to track down the correct citation here!
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