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Abstract

The family of Generalized Empirical Likelihood (GEL) estimators provide
a number of potential advantages relative to Generalized Method of Moments
(GMM) estimators. While it is well known these estimators share an asymp-
totic distribution, the GEL estimators may perform better in finite sample,
particularly in the case of many weak instruments. A relatively new literature
has documented that finite-sample bias in the demand estimation problem of
Berry, Levinsohn, and Pakes (1995) is often large, especially in the absence of
exogenous cost shifting instruments. This paper provides a formulation for a
computationally tractable GEL estimator based on the MPEC method of Su
and Judd (2012) and adapts it to the BLP problem. When compared to GMM,
the GEL estimator performs substantially better, reducing the bias by as much
as 90%. Furthermore, it is possible to use analytic bias correction to reduce the
bias even more and obtain accurate estimates with relatively small numbers of
markets.
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1 Introduction

Economists often rely on structural models to estimate parameters from economic

data and make inferences about equilibrium behavior under alternate conditions. Of-

ten, these models are estimated using the Generalized Method of Moments (GMM)

approach of Hansen (1982). While powerful, a well understood drawback of the

GMM approach is that it can exhibit bias in finite samples as the number of moment

conditions increases (Bekker 1994). The bias can be substantial if there are a large

number of moment conditions (Hansen and Singleton 1983), or those moment condi-

tions become correlated (Abowd and Card 1989). This finite sample bias has been

documented in Monte Carlo studies by Qin and Lawless (1994) and Altonji and Segal

(1996).

There have been a number of attempts to improve upon the finite sample per-

formance of GMM, including the Generalized Empirical Likelihood (GEL) family of

estimators as described in Newey and Smith (2004). Some example of GEL estimators

include the Empirical Likelihood (EL) estimator of Owen (1988), Qin and Lawless

(1994); the exponential tilt (ET) estimator of Kitamura and Stutzer (1997), and Im-

bens, Spady, and Johnson (1998); and the continuously updating GMM estimator

(CUE) of Hansen, Heaton, and Yaron (1996). These estimators possess the same

asymptotic distribution as the GMM estimator, hence the same inference procedures

apply, but they differ in higher-order terms, and finite-sample properties. These es-

timators are also understood to be partially robust to the problem of many weak

instruments (Imbens 2002), (Newey and Windmeijer 2009).

Despite potential advantages, GEL estimators are not frequently used in applied

work. One potential explanation is that GEL-type estimators are perceived to be com-

putationally challenging, because they require estimating many additional parameters

when compared to GMM estimators, and require optimization of a saddle-point prob-

lem. In cases where GEL estimators have been implemented on applied problems,

it has generally been limited to either linear models or relatively simple nonlinear

models.

This paper does two things, the first is to provide a computationally tractable

version of GEL estimators based on the constrained optimization (MPEC) approach

of Su and Judd (2012) and applied to the discrete choice demand estimation problem

of Berry, Levinsohn, and Pakes (1995); the second is to compare the finite-sample
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performance of GEL and GMM under commonly used (and possibly weak) instru-

ments.

One motivation for choosing the BLP problem is that it is an excellent example

of an estimator that is widely used in the literature, but also known to be compu-

tationally challenging. There has been increased interest in the numerical properties

of the BLP problem, since with the highly-cited work of Nevo (2000). For example,

Knittel and Metaxoglou (2013) describe numerical challenges in obtaining the BLP

estimator, and explore the potential of multiple maxima. Judd and Skrainka (2011)

examine the effects of simulation error, and provide improved numerical integration

methods for the BLP problem. Freyberger (2012) develops analytical bias corrections

for the simulation error. Dubé, Fox, and Su (2012) provide a characterization of the

BLP problem based on the MPEC method of Su and Judd (2012), and show that

while it possesses the same econometric properties as the original BLP estimator, in

many cases it may have improved numerical performance while also being easier to

compute.

There has been a recent literature establishing the identification of a larger class

of discrete choice models which includes the BLP problem as a special case. Re-

cent work includes Fox and Gandhi (2012), Gandhi, Berry, and Haile (Forthcoming).

Nonparametric identification has been demonstrated for a larger class of estimators

that includes the micro-data BLP estimator of Berry, Levinsohn, and Pakes (2004)

was established in Berry and Haile (2012b). Berry and Haile (2012a) establish non-

parametric identification results in the case of aggregate (market) data, and examine

the role that both exogenous cost shifting instruments, and characteristics of other

products (BLP instruments) play in identification

There is also a literature on the econometric properties of the BLP problem,

Berry, Linton, and Pakes (2004) study the asymptotic properties as the number of

products J →∞. In other recent work, Armstrong (2013) relates those large market

asymptotic results to the underlying economic primitives. That paper demonstrates

that as J becomes large, the markup converges to a constant; instruments based

on characteristics of competing products (“BLP-instruments”) become weak and the

problem may no longer be well identified. In a Monte Carlo analysis, Armstrong

(2013) shows this leads to substantial finite-sample bias. In related work, Skrainka

(2012) conducts an extremely large Monte Carlo study and shows that in many cases

the finite sample bias of the two-step GMM BLP estimator may be so large that
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asymptotic standard errors no longer reasonably describe the performance of the

estimator, and suggests that the bias may non-decreasing in the sample size.

One way to interpret these results is through the lens of the weak instruments

literature (see Stock, Wright, and Yogo (2002) for a survey), where Stock and Wright

(2000) describe the problem of weak identification in the GMM context. In the

presence of weak instruments, the bias does not disappear as the sample size grows.

Reynaert and Verboven (2012) consider optimal instruments in the form of Cham-

berlain (1987) for the BLP problem with an additional assumption of perfectively

competitive supply, and show that under that assumption, finite sample bias found

by Skrainka (2012) may be decreasing in sample size when optimal instruments are

used. Standard practice in the demand estimation literature is to consider higher

order functions of existing instruments, which act as a sieve approximation to the

optimal instruments; this increases the number of instruments, but may also increase

the correlation across moments. Again, GEL estimators are expected to outperform

GMM estimators in the case of many weak instruments.

This paper shows that when (strong) cost-shifting instruments are employed,

GMM and GEL estimators all perform quite well, even in relatively small samples.

When only (potentially weak) “BLP Instruments” are employed, the bias can be quite

large for small sample sizes (10 markets or less) but as the sample size increases (20 or

more markets) the GEL estimators perform reasonably well, while the GMM estima-

tor remains substantially biased. The Monte Carlo study indicates that the primary

source of the bias is correlation between the BLP moment conditions and their Ja-

cobian, which arises from the endogeneity of prices. This correlation is eliminated in

the GEL estimators. An additional source of bias arises from the commonly chosen

functional forms (higher powers of instruments) which can lead to an ill-conditioned

weighting matrix. Thus, an additional advantage of the MPEC-GEL formulation is

that it never explicitly requires computing the optimal weight matrix.

The organization of the rest of the paper is as follows. First, I present the BLP

problem, explain the source of instruments, and relate it to the theoretical work on

finite sample bias in Newey and Smith (2004). Then, I develop a computational

technique for estimating GEL problems based on the MPEC method of Su and Judd

(2012) that is not substantially more difficult to estimate than the GMM estimator.

Next, I conduct a Monte Carlo analysis similar to the example in Armstrong (2013)

and show that the GEL estimators reduce the bias by up to 90% when using only
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“BLP Instruments”. Finally, I construct confidence intervals by inverting the ELR

test-statistc and show that when only “BLP Instruments” are available, identification

may be weak in small samples, but generally well-identified in larger samples. In

addition to Monte Carlo analysis, I demonstrate that the often cited pseudo-real

cereal example of Nevo (2000) may suffer from weak identification, which provides an

alternate interpretation for the results in Knittel and Metaxoglou (2013).

2 Preliminaries

2.1 Motivation and BLP Problem

We begin by reviewing the estimator proposed by Berry, Levinsohn, and Pakes (1995),

and describing the potential sources of finite sample bias. Consider a consumer i

choosing among J products j = 1, . . . , J and an outside good j = 0 over t = 1, . . . , T

markets. Each product is described by characteristics xjt and each consumer has

tastes for characteristics βi ∼ F (β|θ). Consumers have a random idiosyncratic hor-

izontal preference for each product εij ∼ Type I EV, which allows aggregate shares

sjt to be obtained via integration.

uijt = xjtβi + ξjt − αipjt + εij

sjt(θ, ξ) =

∫
xjtβi + ξjt − αipjt

1 +
∑

k xktβi + ξkt − αipkt
f(βi|θ) (1)

In many common specifications, f(βi|θ) is a multivariate normal distribution with a

diagonal covariance matrix so that the integral in (1) can be computed with Monte

Carlo integration or quadrature rules (Judd and Skrainka 2011) (Heiss and Winschel

2008) with weight wi and nodes νil:

sjt(θ, ξ) =
ns∑
i=1

wisijt =
ns∑
i=1

wi

δjt︷ ︸︸ ︷
xjtβ + ξjt − αpjt +

∑
l νilσlx

l
jt

1 +
∑

k xktβ + ξkt − αpkt +
∑

l νilσlx
l
kt

(2)

ξjt = δj(st,xt,pt, σ)− αpjt − xjtβ (3)

There is a one-to-one correspondence between the marketshares and the ξjt (unob-

servable product quality). This structural error is (potentially) correlated with prices,

but conditionally independent of instruments so that E[ξjt|zjt] = 0 or E[ξjtf(zjt)] = 0
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where zjt is a 1×M dimensional vector of instruments, and f(·) is an arbitrary func-

tion with four finite moments. To construct instruments for unobservable quality we

consider the profit maximization problem of the firm.

max
pj :j∈Jf

∑
j∈Jf

(pj − cj)sj(pt)

Under the assumption of constant marginal costs cj the FOC for firm f and price pj

becomes:

sj(p) +
∑
j∈Jf

(pk − ck)
∂sk(pt)

∂pj
= 0 (4)

The intuition is clearer in the case of single product firms where the markup equation

has the well-known form:

pjt = cjt +
sjt(pt)∣∣∣∂sjt(pt)

∂pjt

∣∣∣ (5)

This suggests two potential sources of instruments for prices; the first of which are

variables that directly shift cjt. The second are non-price characteristics that influence

markups. The elasticity depends not only on own-product characteristics, but also

on the characteristics of other products in the same market. The intuition from

(4) is that characteristics of products owned by the same firm and characteristics of

products owned by other firms affect markups differently.1 This suggests (at least)

three sets of markup shifting instruments or “BLP Instruments” (in addition to cost

shifting instruments): zBLPjt = [xjt,
∑

k∈Jf\j h(xkt),
∑

k:k 6∈Jf h(xkt)], where h(·) is some

bounded continuous function with finite variance (commonly the sample average).

Armstrong (2013) derived three main results for these instruments as the number

of products J → ∞. The first is that for single product firms (5) converges to a

constant markup as J → ∞. The intuition comes from the plain logit model where

(5) approaches a constant: cj + 1
|α(1−sjt)| .

2 Obviously as the markup approaches a

constant, constructing markup shifting instruments becomes impossible. His second

result shows for a fixed number of firms F and an increasing number of products

1This intuition for the cost shifting and BLP instruments is formalized in Berry and Haile (2012a).
2The result itself applies to a more general class of mixtures over logits.

5



J → ∞, markups converge to a firm-specific constant, and instruments of the form∑
k∈Jf\j h(xkt) are able to exploit only variation between firms but not within firms.

His third result shows that as the number of markets T grows sufficiently fast, with

N = T ·J, N
J
→∞, identification is possible but relies on differences in the number of

products per market
∑

k 6=j h(xkt), and N
J
→ c implies weak-instrument asymptotics.

The negative results presented by Armstrong (2013) relate the finite-sample bias

to behavior of markups and the power of instruments as J → ∞.3 This study looks

more closely at the choice of the instruments zjt, especially in the absence of exogenous

cost shifters (which are often unavailable in the empirical settings). Recall that the

BLP moment conditions take the form E[ξjt|zjt] = 0, but are generally estimated via

GMM using the weaker orthogonality restriction E[gi(z; θ0)] = 0, so that:

g(z, θ) =
1

N

∑
j,t

g(zjt; θ) =
1

N

∑
j,t

zjtξjt =
1

N

∑
j,t

zjt(δjt −X ′jtβ − αpjt) (6)

One challenge, as described by Domı́nguez and Lobato (2004) is that a model iden-

tified by a conditional moment restriction may be non-identified under a non-trivial

set of unconditional moments (including the optimal instruments). For GMM estima-

tors, this creates a tradeoff between constructing a basis to approximate conditional

moment restrictions (or optimal instruments) using higher powers, and bias that in-

creases linearly in the number of moment conditions. The behavior of the bias is

formally established in Newey and Smith (2004), and takes the form:

Bias(θ̂GMM) = BG +BΩ +BI

Bias(θ̂CUE) = BΩ +BI (7)

Bias(θ̂EL) = BI

3An omnipresent alternative is a potentially mis-specified model of supply.
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When applied to the BLP problem these yield the following expressions:

BG = −Σ

(
1

J · T

J∑
j=1

T∑
t=1

[
Xjt pjt

∂ξjt
∂σ

]′
zjtPzjtξjt

)

BΩ = H

(
1

J · T

J∑
j=1

T∑
t=1

ξ3
jtzjtz

′
jtPzjt

)
(8)

BI = H

(
1

J · T

J∑
j=1

T∑
t=1

zjt

[
Xjt pjt

∂ξjt
∂σ

]
Hzjtξjt

)

BG results from correlation between the moment conditions and their Jacobian, and

arises because unobservable quality ξjt is correlated with prices pjt. The Monte Carlo

study in the later suggestion suggests that this is the primary source of the bias in

the BLP estimator.4

A second challenge arises from the choice of the instruments zjt and the behavior

of the optimal weighting matrix. For the BLP problem, the (true) optimal GMM

weighting matrix takes the form: Ω0 = E[gi(zi, θ)gi(zi, θ)
′] = 1

N

∑
j,t zjtξ

0
jtξ

0′
jtz
′
jt. Most

of the econometric literature (including (Hansen 1982) and (Newey and Smith 2004))

assumes that Ω0 is full column rank, and that its minimum eigenvalue is bounded

away from zero. For many formulations of the BLP instruments, including those used

in Dubé, Fox, and Su (2012), Nevo (2000), Armstrong (2013) the condition number

(ratio of largest to smallest eigenvalue) is quite large. The typical condition numbers

for those examples are on the order of (108, 108, 107), while condition numbers on

the order of 104 or greater are considered ill-conditioned. This is problematic that

small changes in the sample covariance of the moments may lead to large changes in

its inverse. One advantage of the MPEC-GEL formulation presented later is that it

avoids explicit inversion of the weighting matrix. More detail on conditioning (and

some potential solutions) are provided in the Appendix.

2.2 Review of Empirical Likelihood

Empirical likelihood methods were first established by Owen (1988). Owen (1990)

demonstrated that nonparametric maximum likelihood estimation (NPMLE) could

4Derivation of analytical expressions for the bias in the BLP problem can be found in the Ap-
pendix.
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be adapted to moment condition models while retaining many of the attractive prop-

erties testing and efficiency properties of MLE. Kitamura (2006) provides a detailed

review of the empirical likelihood literature, including derivations via NPMLE and

Generalized Minimum Contrast (GMC), statistical tests, and extensions. Newey and

Smith (2004) show that empirical likelihood estimators are often preferable to GMM

estimators, particularly for models with many moment conditions, or correlated mo-

ment conditions where the asymptotic bias in GMM can be problematic.

What follows is a standard exposition for empirical likelihood in the case of mo-

ment condition models, for more details, consult (Kitamura 2006). We begin by

assuming some data {zi}ni=1 which are distributed IID according to unknown measure

µ. Our econometric model gives us some moment conditions. That is g(z, θ) ∈ Rm

may be scalar valued (m = 1) or it may be vector valued (m > 1).

E[g(zi, θ)] =

∫
g(z, θ)dµ = 0, θ ∈ Θ ∈ Rk

We can assume (w.l.o.g.) the existence of a nonparametric (multinomial) (log) likeli-

hood function where we search for a measure (set of probability weights) (π1, . . . , πn) ∈
∆ the unit simplex, so that each πi corresponds to the weight of associated with each

zi observed in the data.

θ̂EL = arg max
θ,π1,...,πn

n∑
i=1

log πi s.t.
n∑
i=1

πig(zi, θ) = 0, and (π1, . . . , πn) ∈ ∆ (9)

We search for a measure Π which is consistent with the model (satisfies the moment

restrictions) and is as close as possible to the empirical measure µ. In the absence

of any moment restrictions (that is when E[g(zi, θ)] = 0 ∀θ), the solution is trivial

and we have that θ̂GEL = 1
n

or that the optimal weights are the observed empirical

weights in the data.

The problem presented in (9) presents some estimation challenges. The first chal-

lenge is that the dimension of the problem isN+K, thus as the number of observations

increases, so does the number of unknown parameters. The second challenge is that

there are a number of constraints, including both the moment conditions and the π

parameters. These are typically addressed by considering the dual formulation of the
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problem. We obtain this by writing down, and then differentiating the Lagrangian.

L =
n∑
i=1

log πi + λ(1−
n∑
i=1

πi)− nγ′
n∑
i=1

πig(zi, θ)

γ̂(θ) = arg min
γ∈Rq
−

n∑
i=1

log(1 + γ′g(zi, θ))

π̂i(θ) =
1

n(1 + γ̂(θ)′g(zi, θ))
, λ̂ = n

After substituting the above equations, we obtain the following dual (saddle point)

problem:

θ̂EL = arg max
θ∈Θ

lNP (θ) = arg max
θ∈Θ

min
γ∈Rq
−

n∑
i=1

log(1 + γ′g(zi, θ)) (10)

The dual formulation is an unconstrained problem with m + K parameters (one γ

for each moment condition, plus the model parameters). For this reason it is the

formulation that most researchers prefer to work with.

The standard approach to solving the problem presented in (10) is to break it up

into two nested steps. The first step is referred to as the inner loop which fixes a

guess of θ and searches for the Lagrange multipliers which solve minγ −
∑n

i=1 log(1 +

γ′g(zi, θ)). The other step, referred to as the outer loop, searches for the maxθ of

the profiled likelihood lNP (θ). The next section highlights some of the challenges

associated with this approach.

2.3 Challenges of the Dual Formulation

There are a number of numerical and computational challenges associated with em-

pirical likelihood estimators that can make them difficult to implement on real world

data. One of the key challenges is what is known as the convex hull problem. This

arises when, for a given value of the model parameters θ, the inner problem (linear

programming) is infeasible. That is, there is no set of weights for which the moment

conditions can be satisfied, or @(π1, . . . , πn) ∈ ∆ such that
∑n

i=1 πig(zi, θ) = 0. In the

language of the dual, this means the zero vector, 0 /∈ co{g(z1, θ) . . . g(zn, θ)} where

co(·) denotes the convex hull of the vector space. When this occurs, the search for

the Lagrange multipliers γ fails, no minimum exists, and both the likelihood and its
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derivatives are undefined.

The second challenge is that the problem posed by (10) is domain restricted.

The distinction between equilibrium constraints and domain restrictions is that an

equilibrium constraint only needs to be satisfied at an optima, whereas a domain

restriction must be satisfied everywhere. When the domain restriction is violated, the

objective function (and its derivatives) are undefined. When an equilibrium constraint

is violated, the objective (and the constraints) and all the derivatives are well defined.

The domain restrictions of the EL problem depend on the formulation. The primal

problem has the restriction that πi ≥ 0. This is a fixed domain restriction, because

when πi < 0, then log πi is undefined. This restriction is easy to handle by placing

bounds on the parameter values. The second restriction is that for some values of

(γ, zi) the argument of log(·) is negative or γ′g(zi, θ) ≤ −1. This is more difficult to

deal with, because the domain restriction varies with the choice of the parameter θ.

We do not know in advance where the objective function will be defined or undefined.

Any search procedure we use must be able to deal with an undefined objective function

by backtracking or restarting.

The third challenge is that the problem posed by (10) is a saddle-point problem.

There are very few off the shelf optimization routines developed for saddle-point prob-

lems. Most researchers, solve this problem using the inner-loop/outer-loop iterative

procedure previously described rather than a single optimization problem. Notwith-

standing the two challenges posed above, the inner loop is a M dimensional opti-

mization problem, and is convex when g(zi, θ) is convex (linear moment conditions),

so quasi-Newton procedures can work quite well. The outer loop is a K dimensional

nonlinear search, and is much more difficult for two reasons. The first is that the

objective function is not explicitly defined, but is rather the implicit solution to an

optimization problem, which makes obtaining derivatives difficult, especially when the

moment conditions do not have analytic expressions. The second challenge is that

the resulting problem (the max of a min) is non-convex. This combination of chal-

lenges leads researchers to employ custom routines (often using non-derivative based

methods for the outer loop, and backtracking when the problem becomes “stuck” or

infeasible) to estimate even fairly simple empirical likelihood models.
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2.4 MPEC Formulation of GEL

If we work with the primal version of the empirical likelihood estimator we defined

in (9), we notice that this problem can be expressed directly as an MPEC problem:5

θ̂EL = arg min
θ,π1,...,πn

n∑
i=1

f(πi) s .t.

n∑
i=1

πig(zi, θ) = 0 (11)

n∑
i=1

πi = 1 − πi ≤ 0

Ψ(P, θ) = 0

The formulation is (11) has not specified a choice for f(πi). If f(πi) = − log(πi) this

produces the empirical likelihood estimator, if f(πi) = πi log(πi) this corresponds to

the exponential tilting (ET) estimator, and f(πi) = π2
i corresponds to CUE. Together

these are all different cases of Generalized Empirical Likelihood (GEL) estimators

(Newey and Smith 2004).

When f(πi) is concave, this is a convex optimization problem with the excep-

tion of the moment condition constraint. When that constraint is affine, the entire

optimization problem in (11) would be convex. For simple cases like instrumental

variables g(zi, θ) is quadratic, thus the resulting problem becomes a convex objective

function with quadratic constraints.6

This primal problem can be solved using the large-scale constrained optimization

software, employing the MPEC method of Su and Judd (2012). The optimization

problem is now an N + K dimensional search, whereas the dual was a M inside a

K dimensional search. Many good commercial solvers, such as KNITRO or IPOPT,

are able to solve convex objectives with quadratic constraints for very large problems

(tens of thousands of parameters). Unlike the saddle point problem, which must

5It should be noted that this is definitely not the first presentation of the primal EL/GEL problem.
Owen (1988) provides a statement of the primal problem (and its derivatives) on p.241 of his book,
though it gets seldom used in practice. This presentation adds the (optional) additional equilibrium
constraint Ψ(P, θ) as in Su and Judd (2012)

6The CUE estimator is of the form f(πi) = π2
i and is an even simpler quadratically constrained

quadratic programming problem (QCQP). This is substantially less complicated that the traditional
formulation of CUE in Hansen, Heaton, and Yaron (1996) which is highly non-convex, and prone to
multiple maxima.
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be solved in a nested manner, the MPEC formulation can be directly solved by the

optimizer. The second advantage is that the domain restriction has been eliminated,

and the only remaining restrictions are the bounds restrictions on πi ≥ 0 ∀i.
It is important to notice that this estimator is not statistically different from the

dual (saddle point) estimator. In both (11) and (10) the same θ̂ solves both optimiza-

tion problems. Any differences between θ̂ obtained from the two approaches should

be attributed to numerical error in the optimization routines (assuming both routines

find the optimum) rather than statistical sampling. In fact, many software packages

solve linear programming problems by re-formulating and solving the problem using

duality. However, the MPEC formulation makes certain kinds of inference procedures

easier to implement (especially restrictions that can be directly incorporated into the

optimization problem). More detail is provided in Appendix A.1.

3 Estimation Algorithms

This section describes the two GMM-based approaches to estimating the BLP prob-

lem, as well as the new EL-MPEC approach. In this section, we review existing

algorithms for obtaining the estimator of Berry, Levinsohn, and Pakes (1995) and

then show how to adapt the BLP problem to the MPEC-EL framework.

GMM-Fixed Point (Berry, Levinsohn, and Pakes 1995)

The traditional (NFXP) estimator solves the following mathematical program, be-

ginning with partitioning the parameter space between linear parameters and the

variance of the random coefficients θ = [α, β︸︷︷︸
θ1

, θ2]:

min
θ2

ψ′Ω−1ψ s.t.

ψ = ξ(θ2)′Z

ξjt(θ) = δj(θ2)− xjtβ − αpjt (12)

log(Sjt) = log(sjt(δ, θ2))

The solution algorithm uses a fixed point to reduce the parameter space. For each

guess of θ2 (nonlinear parameters) the J×T system of nonlinear equations log(Sjt) =
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log(sjt(δ, θ2)) is solved for δ via the following iterative procedure:7

δh+1
jt = δhjt + log(Sjt)− log(sjt(δ

h, θ2))

Once δ is obtained, ξjt is obtained as the residual of a two step IV-GMM regression of

δ on the observables xjt. This is then used to construct the GMM objective function,

which is often optimized with a gradient free procedure such as Nelder-Mead, over θ2

only. Dubé, Fox, and Su (2012) provide a detailed analysis of this algorithm as well

as number of potential pitfalls and problems. When the dimension of θ2 is small (such

as a single random coefficient) this may still be the preferred estimation method.

GMM-MPEC (Dubé, Fox, and Su 2012)

The same statistical estimator can be rewritten as a constrained problem:

min
θ2,α,β,ξ,ψ

ψ′Ω−1ψ s.t.

ψ = ξ′Z (13)

log(Sjt) = log(sjt(ξ, θ2, α, β))

The objective function is depends only on ψ, and none of the other parameters. This

is a quadratic objective function with a series of N = J×T nonlinear constraints, and

N linear constraints. The principal advantage of this approach is that we can use a

derivative-based Quasi-Newton approach for optimization, and simultaneously solve

the share equations while minimizing the objective function. The key to the MPEC

approach is that modern optimization software it is able to exploit the sparsity of the

problem. Here the sparsity arises because ξjt only enters the marketshares of products

7It is important to note that this part is entirely optional. The algorithm is unchanged regardless
of how δ is obtained. Some have suggested using Newton’s method, others have proposed modified
fixed point iterations see (Reynaerts, Varadhan, and Nash 2012). It is also important to note that
the contraction mapping induces noisy function evaluations unless it starts at the same δ0 each
time. That is evaluations of the objective function at the same θ will not necessarily be exactly the
same. While this seems obvious, the Nevo (2000) code example employed by Knittel and Metaxoglou
(2013) uses the δ vector from the previous iteration to reduce iterations of the contraction mapping.
This is disastrous for finite difference derivatives, and is quite problematic for convergence overall.
This perhaps provides some explanation why Knittel and Metaxoglou (2013) found SOLVOPT, a
noisy function optimizer based on the subgradient method worked the best, or why Dubé, Fox, and
Su (2012) recommend setting the contraction mapping tolerance close to machine precision 1e− 14.
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in the same market t. Dubé, Fox, and Su (2012) show that this formulation is often

easier to compute and that error in the share equations (either from optimization or

integration) does not have as large an impact on parameter estimates as in the NFXP

case. The computational advantage of the MPEC approach over NFXP is increasing

in the number of nonlinear parameters.

GEL-MPEC

The MPEC version of the Generalized Empirical Likelihood Estimator looks slightly

different:

min
θ2,α,β,ξ,π

∑
j,t

f(πjt) s.t.

0 =
∑
j,t

πjtξjtz
q
jt ∀q (14)

n∑
i=1

πi = 1 − πi ≤ 0

log(Sjt) = log(sjt(ξ, θ2, α, β))

This problem is somewhat more challenging than the GMM problem above. The

objective function is still convex, but no longer quadratic (except in the case of

CUE). Instead of N linear moment constraints, the introduction of the EL weights π

results in N quadratic constraints. In practice, because the difficulty usually lies in

solving the N non-linear potentially non-convex share equations, this problem is not

appreciably more difficult to solve than the GMM-MPEC approach.

Concentrated GEL-Primal

In some cases the dimension of the nonlinear parameters is small, and it may be

easier to reformulate the Empirical Likelihood estimator as a hybrid between the

full MPEC approach above and something more similar to the traditional NFXP
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approach employed for GMM estimators.

arg min
θ2

GELP (θ2) = min
α,β,ξ,π

∑
j,t

f(πjt) s.t.

0 =
∑
j,t

πjtξjtz
q
jt

ξjt = δj(θ2)− xjtβ − αpjt (15)

log(Sjt) = log(sjt(δ, θ2))

In this approach, for a guess of the nonlinear parameters θ2 we solve the system of

share equations for δ(θ2) (perhaps using the contraction mapping of Berry, Levin-

sohn, and Pakes (1995)). Given δ(θ2) the resulting primal formulation of the em-

pirical likelihood problem is a globally convex optimization problem with quadratic

constraints, which is trivial to solve for (α, β, ξ, π) and produces the profiled GEL

function GELP (θ2). As long as the dimension of θ2 is small, it is possible to mini-

mize the profiled likelihood over θ2.8

For purposes of completeness, a (computationally infeasible) dual formulation of

the EL problem is presented in the Appendix.

4 Empirical Examples

4.1 Monte Carlo Study

In a Monte Carlo study, I replicate the data generating process in Armstrong (2013).

One of the nice features of this setting is that it explicitly considers the differences

between exogenous cost shifting instruments, and BLP-type markup shifting instru-

ments (including average characteristics of other products). Another nice feature not

present in many of the other Monte Carlo studies of the BLP problem (with the ex-

ception of Skrainka (2012)) is that prices are not randomly generated via a reduced

form, but endogenously determined as the solution to the firms’ optimization prob-

lem. This is crucial because it makes explicit the relationship between markups and

characteristics of other products, which is the justification of the “BLP Instruments”.

Armstrong’s setting is very simple in that it considers only a single exogenous

product characteristic xjt and a single cost shifter zjt as U [0, 1] random variables.

8I recommend this approach for one or two nonlinear parameters.
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Three more standard uniform random variables u1j, u2j, u3j are constructed where

ξj = 0.9 · u1j + 0.1 · u3j − 1 and ηj = 0.9 · u1j + 0.1 · u2j − 1. Marginal costs are

constructed as MCj = (x′j, z
′
j)γ + ηj with parameters γ′ = (2, 1, 1), and utilities are

constructed with parameters (1, 3, 6) corresponding to price, the constant term, and

xjt.
9 Consumers vary in their taste for xjt as determined by a normal distribution

with mean zero and σ = 3.10 After generating marginal costs and consumer utilities,

I solve for endogenous prices and shares following the modified fixed-point formula of

Morrow and Skerlos (2011).11

I consider several different market sizes T = {3, 10, 25, 50, 100} and numbers of

products per market J = {20, 60, 100} and F = 10 firms per market. For each setting

I generate 100 fake datasets. Where this study departs from Armstrong (2013), is

that he considered a just-identified GMM setting. I consider an over-identified setting

with three different sets of instruments.

The full set of instruments includes: a constant, the regressor xjt, the exogenous

cost shifter zjt and its square z2
jt, and two BLP instruments: the average xjt of all

other products in market t, x−j,t, and the average xjt of products owned by other

firms. I then consider a reduced set of instruments that does not include cost shifters

zjt, z
2
jt, but does include quadratic interactions of the other instruments; I label this

“BLP Only” instruments. For the third set of instruments, I consider a regularized

(lower dimensional) version of the BLP Only instruments. More specifically, I con-

struct the principal components of the Z-scores for the set of BLP instruments. I

follow Carrasco (2012) and select principal components corresponding to the largest

eigenvalues (Spectral Cutoff) and label them “PC Instruments”. The hope is that

these solve two potential problems. One is that bias in GMM grows in the number

of instruments, so reducing the number of instruments should alleviate the bias. The

9At these parameters, the outside good share is very small, and the Lipschitz constant is close
to one. As shown in Dubé, Fox, and Su (2012) this implies that the rate of convergence of the
traditional BLP contraction mapping may be very slow. MPEC or NFP and Newton’s method are
unaffected by the Lipschitz constant.

10Because there is only a single random coefficient, I use quadrature rules that are exact to 16
degrees of polynomial accuracy. This effectively eliminates simulation error in this problem. For a
discussion of quadrature rules in mixed logit demand settings, refer to Heiss and Winschel (2008) or
Judd and Skrainka (2011).

11Both Armstrong (2013) and Skrainka (2012) mention that in some cases Newton’s method fails
to find an equilibrium vector of prices and quantities. This was not my experience with the ζ-fixed
point approach of Morrow and Skerlos (2011), which is both faster and more robust than Newton’s
method for solving Bertrand-Nash pricing games. The modified fixed-point proposed in that work
is similar in spirit to Skrainka’s suggestion of normalizing by the marketshares.
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second is that the principal components provide an orthogonal basis which guarantees

the weighting matrix is well-conditioned. This relationship is not explicitly considered

in Carrasco (2012) but is similar in spirit to Knight and Fu (2000), Caner and Yildiz

(2012), or Caner (2008). The three sets of instruments are of dimension {6, 7, 5}
respectively.

In Table 1, I report the condition number (ratio of largest to smallest eigenvalues)

for the optimal GMM weighting matrix evaluated at the true ξ0. The condition

number appears to be (slowly) decreasing in the number of markets, but the largest

difference seems to be across instrument sets; with the Cost Instruments and Principal

Components BLP instruments having condition numbers on the order of 103 or less

(well-conditioned) and the original BLP instruments having a condition number on

the order of 106 or more (ill-conditioned).

Table 1: Median Condition Number of Optimal Weight Matrix

J T Cost Inst BLP Inst PC Inst

20 3 3.33E+03 4.04E+06 6.23E+02
60 3 1.01E+04 8.33E+07 1.08E+03

100 3 1.37E+04 2.12E+08 1.47E+03
100 10 8.50E+03 1.57E+07 8.87E+02
20 20 1.52E+03 3.50E+05 4.05E+02
60 20 4.36E+03 3.01E+06 4.49E+02

100 20 7.36E+03 1.02E+07 7.55E+02
100 50 7.01E+03 6.95E+06 7.15E+02
20 100 1.35E+03 2.25E+05 3.77E+02
60 100 4.07E+03 2.25E+06 4.17E+02

100 100 6.98E+03 6.21E+06 7.12E+02

For each set of instruments I compute both the 2-step optimal GMM estimator

and an EL estimator.12 I begin by considering the case of exogenous cost shifting

(strong) instruments. Table 2 reports the median bias of the price parameter α and

the average own price elasticity.13 When markets are large, the bias is negligible for

12I use the 2SLS weight matrix
(

1
J·T

∑
j,t ZjtZ

′
jt

)−1

for the first step of the optimal GMM esti-

mator.
13Following the suggestion in Berry and Pakes (2001), focusing on the elasticity rather than in-

sample fit or parameter values provides more information about counterfactual predictions of the
model. For the EL estimators, the mean own price elasticity is computed over the empirical likelihood
measure π rather than the empirical measure 1

n .(Brown and Newey 1998)
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all of the estimators; in small markets T = 3, 10 the GEL estimators appear to exhibit

bias approximately one half as large as GMM.

Table 2: Bias in α and average own-price elasticity with cost shifting instruments

Bias in α Average Own Price Elasticity

J T GMM CUE EL GMM CUE EL
20 3 0.0399 0.0271 0.0090 0.0840 -0.0096 -0.0296
60 3 0.0087 -0.0025 -0.0030 0.0852 0.0413 0.0352

100 3 0.0143 0.0095 0.0090 0.0567 0.0391 0.0394
100 10 0.0038 -0.0001 -0.0003 0.0018 -0.0089 -0.0091
20 20 0.0028 -0.0003 -0.0006 0.0155 0.0068 0.0069
60 20 0.0048 0.0034 0.0032 0.0305 0.0219 0.0222

100 20 0.0002 -0.0011 -0.0011 0.0028 -0.0020 -0.0017
100 50 -0.0001 -0.0007 -0.0007 0.0074 0.0059 0.0058
20 100 0.0019 0.0017 0.0016 0.0039 0.0020 0.0018
60 100 0.0003 0.0002 0.0002 0.0108 0.0096 0.0096

100 100 -0.0007 -0.0010 -0.0010 -0.0004 -0.0017 -0.0016

A more interesting case to applied researchers is what happens when only BLP

instruments are available (and exogenous cost shifters are not). I report results for

the price parameter α, and the average own price elasticity in Tables 3 and 4 re-

spectively. Because most policies such as merger evaluation are more closely linked

to the elasticities, I focus primarily on those. Figures 1 shows how the median bias

declines in the sample size for the average own-price elasticity. When we examine

the bias in the mean elasticity we see that the baseline GMM-BLP estimator shows

substantial bias that does not appear to die out very quickly with the sample size.

Even at T = 100 markets, larger than in many empirical studies, the bias is about

10% of the average own price elasticity. In contrast, the GMM estimator using the

principal components instruments shows similar bias in small markets, but the bias

declines more quickly in the sample size so that for T = 100 markets it is approx-

imately one half as large. The two GEL estimators (CUE and EL) exhibit similar

bias to one another and outperform the GMM estimator in nearly all cases. The

GEL estimators with T = 20 markets exhibit less bias than the GMM estimator does

with T = 100 markets, and at T = 100 markets the GEL estimators reduce the bias

by around 90%. Economically, this means that with J = 100 products and T = 20

markets, the median bias represents almost 20% of the true elasticity with GMM
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whereas for CUE it represents less than 2%. Additionally, the GEL estimators do not

appear to benefit from the use of the principal components instruments. This makes

intuitive sense because they do not require directly calculating the optimal weighting

matrix (or its inverse), as GEL weights π are chosen so that all moment conditions

must be exactly satisfied at the optimum.14 Table 5, reports the MAD for the three

estimators. Despite it’s improved bias, there seems to be no efficiency advantage for

the GEL estimators when compared to GMM. Similarly, the regularized instruments

do not appear to improve the efficiency of the estimator.15 Rejection rates for the

ELR test with 5% significance are reported in Table 6, and indicate that BLP-Only

instruments have little power for sample sizes T ≤ 20, but look reasonable for T ≥ 50.
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Figure 1: Median Bias of Average Own Price Elasticity

To understand the source of the bias, it is possible to evaluate the analytic ex-

pressions for the bias given in Newey and Smith (2004) for the BLP estimator (8)

14This is even true for CUE. Though CUE is often presented as a continuously updating GMM
estimator where the weight matrix is updated for each evaluation of θ as in Hansen, Heaton, and
Yaron (1996), the GEL-MPEC formulation means that this weighting matrix and its inverse are
never explicitly required during parameter estimation.

15RMSE calculations are also available upon request, but omitted for space considerations. RMSE
is more sensitive to outliers than MAD, so trimming needs to be employed in order to make mean-
ingful comparisons.
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Table 3: Bias in α with BLP and PC Instruments

BLP Inst. PC Inst.

J T GMM EL CUE GMM EL CUE
20 3 0.3308 0.2886 0.2663 0.3660 0.3097 0.3641
20 20 0.2487 0.0942 0.0901 0.2034 0.0820 0.0830
20 100 0.1158 0.0240 0.0232 0.0667 0.0280 0.0281
60 3 0.3717 0.3092 0.3188 0.3992 0.3946 0.3990
60 20 0.2570 0.1445 0.1605 0.1597 0.0959 0.0914
60 100 0.0669 0.0104 0.0077 0.0331 0.0137 0.0121

100 3 0.4155 0.3542 0.3880 0.3627 0.3526 0.3523
100 10 0.2788 0.1225 0.1237 0.2123 0.1285 0.1119
100 20 0.1937 0.0398 0.0132 0.1233 0.0315 0.0196
100 50 0.1059 -0.0034 -0.0014 0.0333 -0.0112 -0.0147
100 100 0.0802 0.0081 0.0082 0.0386 0.0186 0.0186

Table 4: Median Bias in Average Own-Price Elasticity

BLP Inst. PC Inst.

J T GMM CUE EL GMM CUE EL
20 3 1.0133 0.8226 0.8257 1.1334 1.0998 0.9161
60 3 1.2638 1.1083 1.0691 1.3756 1.3811 1.3557

100 3 1.4196 1.3110 1.1958 1.2559 1.2208 1.2219
100 10 0.9414 0.4195 0.4093 0.6918 0.3667 0.4291
20 20 0.7893 0.2892 0.3212 0.6668 0.2369 0.2374
60 20 0.8717 0.5465 0.4856 0.5381 0.3113 0.3156

100 20 0.6516 0.0551 0.1292 0.4147 0.0625 0.1120
100 50 0.3609 0.0031 -0.0036 0.1180 -0.0401 -0.0347
20 100 0.3632 0.0817 0.0841 0.2026 0.0876 0.0878
60 100 0.2276 0.0297 0.0435 0.1156 0.0494 0.0561

100 100 0.2711 0.0254 0.0254 0.1304 0.0597 0.0602
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Table 5: Median Absolute Deviation of Average Own-Price Elasticity

Cost Inst BLP inst PC inst

J T GMM GMM CUE EL GMM CUE EL
20 3 0.2550 1.0764 2.1072 2.1109 1.3984 2.1255 2.1637
60 3 0.1485 1.3144 2.1349 2.0812 1.4654 1.9346 2.0793

100 3 0.1468 1.4856 2.1053 2.0290 1.5633 1.9699 1.9768
100 10 0.0766 1.0136 1.2920 1.2812 0.9945 1.2203 1.2187
20 20 0.0863 0.8353 1.0404 1.0165 0.7938 0.9053 0.8947
60 20 0.0584 0.9051 0.9678 0.9545 0.7576 0.9079 0.9071

100 20 0.0483 0.7564 0.9348 0.9099 0.7370 0.8376 0.8362
100 50 0.0335 0.4104 0.4999 0.4876 0.4362 0.4684 0.4543
20 100 0.0403 0.4251 0.4431 0.4423 0.4586 0.4852 0.4865
60 100 0.0218 0.3664 0.4012 0.3860 0.3611 0.3609 0.3603

100 100 0.0184 0.4139 0.3596 0.3604 0.3680 0.3602 0.3600

Table 6: 5% ELR Test Rejection Rates for α (Cost Inst, BLP Inst, PC Inst)

J T Truth Zero

100 3 3,14,3 100,18,6
100 10 3,10,1 100,43,16
100 20 3,8,2 100,68,58
100 50 4,8,1 100,94,89
100 100 6,8,4 100,100,100
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under the three different sets of instruments. These results are reported in Table 7,

and correspond to the observed bias in the Monte Carlo study. As one might expect,

all three bias components are substantially smaller when the exogenous cost shifting

instruments are available. All of the bias components also appears to be declining

in both J and T .16 In all cases, the largest bias term is BG which comes from the

correlation of ξjt with pjt. The use of the PC instruments increases the magnitude of

the residual bias BI and decreases the magnitude of the endogeneity bias BG. This

makes sense because the principal components are chosen so as to approximate but

not fully span the space of instruments, while the orthogonal basis reduces some of

the correlation in BG, this may partially explain why GMM benefits from the regu-

larized instruments and the GEL estimators do not. Also, the bias in BΩ is generally

quite small which suggests similar performance for CUE and EL. However, BΩ does

not account for possible ill-conditioning of the optimal weighting matrix.

Table 7: Analytic Bias Expressions

Cost Inst BLP Inst PC Inst

J T BI BG BΩ BI BG BΩ BI BG BΩ

20 3 0.0130 0.0342 0.0034 0.1180 0.3443 0.0519 0.1881 0.2606 0.0180
60 3 0.0044 0.0123 0.0004 0.0917 0.3817 0.0273 0.1578 0.3164 0.0057

100 3 0.0026 0.0079 0.0002 0.0996 0.3439 0.0145 0.1663 0.2540 0.0090
100 10 0.0008 0.0024 0.0000 0.0738 0.2800 0.0049 0.1240 0.2574 0.0067
20 20 0.0018 0.0056 0.0001 0.0785 0.2452 0.0192 0.1244 0.2463 0.0135
60 20 0.0007 0.0020 0.0000 0.0572 0.2101 0.0037 0.0927 0.2008 0.0024

100 20 0.0004 0.0012 0.0000 0.0543 0.2150 0.0027 0.0891 0.1775 0.0025
100 50 0.0002 0.0005 0.0000 0.0309 0.1198 0.0020 0.0478 0.0896 0.0003
20 100 0.0004 0.0011 0.0000 0.0235 0.0749 0.0052 0.0464 0.0727 0.0025
60 100 0.0001 0.0004 0.0000 0.0224 0.0786 0.0011 0.0317 0.0599 0.0004

100 100 0.0001 0.0002 0.0000 0.0195 0.0742 0.0009 0.0298 0.0582 0.0001

As a final example, it is possible to use the analytical expressions for bias given

in Newey and Smith (2004) to remove all of the asymptotic bias from the EL-BLP

estimator. A well-known property of empirical likelihood estimators is that once

they are bias-corrected they are higher order efficient. Moreover, Brown and Newey

(1998) showed that the higher order efficiency property is inherited by functions of

the form E[a(z, θ)] =
∑N

i=1 π̂i
GELa(z, θ), which includes the BLP average own price

16Armstrong (2013)’s results suggest that instruments become weaker as J increases.
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elasticity. The bias and MAD of the bias-corrected EL estimator is reported in Tables

8 and (9). Here the results are quite striking. The analytic bias correction is able

to remove nearly all of the bias of the EL-BLP estimator, so that even with a small

number of markets, and without exogenous cost shifters, bias corrected EL is able to

obtain accurate estimates of the price elasticity. Also, though the behavior of the EL

estimator is largely unaffected by the principal components regularization, the bias-

corrected EL estimator performs much better under the regularized PC instruments.

Part of this may come from the fact that while the GEL estimator does not require

inverting the variance matrix, the analytic bias correction does. Again, because the

regularized PC instruments result in a better conditioned inverse, this may yield a

more accurate expression for the bias in finite-samples.

Table 8: Finite Sample Bias in Bias-Corrected GEL Average Elasticity

BLP inst PC inst

J T CUE EL CUE EL
20 3 0.3178 0.5605 -0.0100 0.1213
60 3 0.8487 0.8723 0.7730 0.9014

100 3 1.1539 1.0983 0.6837 0.6873
100 10 0.1311 0.0973 -0.1117 0.0208
20 20 -0.0671 0.0858 -0.2812 -0.1798
60 20 0.2457 0.3061 -0.0825 -0.1024

Table 9: Relative Performance of Bias-Corrected EL

Price Parameter α Mean Own-Price Elasticity
Relative Bias Relative MAD Relative Bias Relative MAD

J T BLP PC BLP PC BLP PC BLP PC
20 3 0.67 0.22 0.93 0.93 0.68 0.13 0.93 0.94
60 3 0.84 0.65 0.97 0.89 0.82 0.66 0.96 0.88

100 3 0.92 0.58 1.03 0.95 0.92 0.56 1.03 0.95
100 10 0.24 0.09 0.98 1.01 0.24 0.05 0.98 1.01
20 20 0.24 -0.64 1.12 0.96 0.27 -0.76 1.12 0.95
60 20 0.60 -0.35 0.98 1.11 0.63 -0.32 0.95 1.09
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4.2 Replication of Nevo(2000)

The fake-data example of Nevo (2000) has received much attention in the new liter-

ature examining the properties of the BLP estimator, including but not limited to

recent work by: Knittel and Metaxoglou (2013), Dubé, Fox, and Su (2012), and Lee

and Seo (2013). The dataset examines 94 markets and 24 brands, with 20 simulation

draws per market, designed to mimic the study of ready-to-eat cereal in Nevo (2001).

In the literature that has subsequently examined the Nevo (2000) example, the 20

simulation draws have been fixed and treated as if the true population is a 20-point

discrete distribution (an assumption I maintain) for the 9 nonlinear parameters. Also,

previous analysis of the Nevo (2000) example such as Knittel and Metaxoglou (2013)

or Dubé, Fox, and Su (2012) have employed one-step GMM using the TSLS weight-

ing matrix W = (Z ′Z)−1. This matrix is ill-conditioned with a condition number

1.9× 108, which makes two-step optimal GMM estimates (and asymptotic standard

errors) difficult to obtain.

I report three sets of the results in Table 4.2: the results of the original nested-fixed

point estimator of Nevo (2000), the results of the (TSLS) GMM-MPEC estimator of

Dubé, Fox, and Su (2012), and the results of the EL-MPEC estimator.17 The GMM-

MPEC and EL-MPEC approaches produce very similar point-estimates. I also report

the EL-MPEC asymptotic standard errors in brackets18, which produce reasonable

confidence intervals in most of the (non-price) parameters.

As a second exercise, I construct a confidence interval for the price parameter α,

by inverting the ELR test statistic. This is similar to the idea of Anderson and Rubin

(1949), which provided a weak-instrument robust test of the hypothesis that α̂ = α0,

and was formalized in relation to generalized empirical likelihood in in the GELR

statistic of Guggenberger and Smith (2005). More detail on how the ELR statistic

is computed in this setting is provided in the Appendix. The ELR robust confidence

interval consists of all of the values α for which the ELR test does not reject the null

hypothesis {α : ELR(α)−maxα′ ELR(α′) ≤ χ2
1}.

Figure 4.2 plots the maximized profile ELR statistic: ELR(α) = maxθ EL(α, θ)−
N logN . As the figure indicates, despite relatively small asymptotic standard errors,

17The NFP estimator can be adjusted as suggested in Dubé, Fox, and Su (2012) by tightening
the tolerance of the inner loop (contraction mapping) at which point it produces estimates nearly
identical to the GMM-MPEC case.

18The GMM-MPEC standard errors (and point estimates) are nearly identical.
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Table 10: Replication of Nevo Example

Nevo GMM-MPEC EL-MPEC [S.E.]

Price -28.189 -62.726 -61.433 [14.999]
σp 0.330 0.558 0.527 [0.116]

σconst 2.453 3.313 3.143 [1.270]
σsugar 0.016 -0.006 0.000 [0.013]
σmushy 0.244 0.093 0.085 [0.181]
πp,inc 15.894 588.206 564.262 [275.220]
πp,inc2 -1.200 -30.185 -28.930 [14.349]
πp,kid 2.634 11.058 11.700 [4.115]
πc,inc 5.482 2.291 2.246 [1.197]
πc,age 0.204 1.284 1.379 [0.644]

GMM 29.3611 4.564
ELR 5.275

the ELR test fails to reject at 5% for a wide range of parameter values [−161,−40].

The ELR test statistic also fails to reject α0 = 0 at 2.5% and nearly anything at

1%. This provides some indication that the fake-data example of Nevo (2000) suffers

from weak identification, and suggests an alternate hypothesis for the negative results

found by Knittel and Metaxoglou (2013), namely that the failure was not exclusively

of the BLP method or the optimization per se but rather of the instruments, which

results in a mostly flat objective function.19

5 Conclusion

Empirical likelihood and GEL estimators represent a major development in the econo-

metric literature over the past two decades. These estimators provide advantages over

GMM estimators, especially as it pertains to finite-sample bias, and higher-order effi-

ciency. Additionally, EL estimators are known to be partially robust to the problem

of many weak instruments, which often arises when constructing moment conditions

from conditional moment restrictions. Despite having desirable properties, EL esti-

mators are rarely found in applied work. The principal drawback is that computing

19Using higher-order functions of instruments to form moments, or using smoothed conditional
moments (Kitamura, Tripathi, and Ahn 2004) does not seem to aid identification in this particular
example.
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Figure 2: Profile Empirical Likelihood of Price Coefficient for Nevo Dataset

the estimator can be very difficult, and that past studies have found only modest

improvements when using EL instead of GMM.

The GEL-MPEC formulation provided in this paper provides a computationally

attractive method to obtain GEL estimators, including the computationally challeng-

ing simulated nonlinear problem of Berry, Levinsohn, and Pakes (1995). When both

exogenous cost-shifting instruments and characteristics of other products (BLP in-

struments) are available, GMM and GEL estimators both perform very well, even in

small samples. However, in many empirical settings, economists do not have access

to high quality data on costs or cost shocks. In those cases, the GMM estimator

tends to exhibit substantial finite-sample bias, so that even as the number of markets

becomes large, the behavior of the estimator is not well described by its asymptotic

distribution. The GEL estimators generally perform better, so that the bias is mod-

est, even in small numbers of markets. Moreover, it is possible to use the analytic

bias correction of Newey and Smith (2004) and remove all asymptotic bias from the

EL estimator. After bias correction, the EL estimator demonstrates negligible bias

even for small samples. This could prove extremely valuable for applied researchers,

for example, in the case of J = 100 products, and T = 10 markets, the median bias
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in the average own price elasticity of the GMM-BLP estimator is approximately 0.94,

and for bias-corrected EL with regularized instruments it is only 0.02. Moreover,

the MPEC method makes the GEL-BLP estimator not appreciably more difficult to

compute than the GMM estimator.

This suggests some strategies for empirical researchers estimating BLP-type prob-

lems. The first is that the EL-MPEC method provides substantial econometric ad-

vantages over GMM. The second, is that the choice of the weighting matrix (and it’s

condition number) play an important role in finite-sample performance of GMM-BLP

estimators, and for bias correction of GEL estimators. The third recommendation is

that profiling the empirical likelihood function in the spirit of Anderson and Rubin

(1949) or Guggenberger and Smith (2005), can provide diagnostic information about

the degree of identification provided by the instruments, and is especially important

for the BLP price parameter.
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Appendix

A.1 EL-Dual

For completeness, consider how the EL estimator might be obtained using the dual:

θ̂EL = arg max
θ∈Θ

min
γ
−

n∑
i=1

log(1 + γ′g(zi, θ))

In the case of demand estimation g(zi, θ) = ξizi∗ is 1×Q. There are two options, the first would be to
solve the EL optimization problem subject to the marketshare constraint or the “constrained-dual”:

θ̂EL = arg max
θ,ξ,α,β

min
γ
−

n∑
i=1

log(1 + ξjtγ
′zjt) s.t.

sjt(θ) =

∫
exp[xjtβi + ξjt − αipjt]

1 +
∑
k exp[xktβi + ξkt − αipkt]

f(βi|θ)

log(Sjt) = log(sjt(δ, θ2))

The “constrained-dual” approach has some drawbacks. The objective function is a globally convex
minimax (saddle-point) optimization problem, but it is now subjected to N nonlinear equality con-
straints for the marketshares. It’s not entirely clear how to go about solving this sort of constrained
minimax problem. There may be methods to solve these problems, but they would be“cutting-edge”
in the optimization literature, and are generally unavailable in standard software packages.

The second would be to solve a doubly nested problem, which we obtain by combining the fixed
point approach in Berry, Levinsohn, and Pakes (1995) and the saddle point approach in the empirical
likelihood literature and put them together:

θ̂EL = arg max
θ

min
γ
−

n∑
i=1

log(1 + ξi(θ)γ
′zi)

ξjt(θ) = δj(θ2)− xjtβi − αipjt
log(Sjt) = log(sjt(δ, θ2))

The doubly-nested fixed point approach involves the following for each guess of θ. First solve the
share equations via the contraction mapping for the δ vector. Then obtain the ξ as the residuals of
regression of δ on observables. Then, plug those ξ values into the saddle-point, and solve that via
Newton-steps for γ. Using (γ, ξ) we can then evaluate the objective function for θ. Even though
the objective function is convex in ξ, it is not necessarily convex in θ, and differentiating through
the maximum of a fixed point points is numerically unstable, so that a evaluation only method
such as Nelder-Mead would be used for the outer loop. For large problems, this approach can be
computationally infeasible.

A.2 EL-MPEC Inference

Qin and Lawless (1994) show that the asymptotic distribution of the empirical likelihood estimator
attains the semiparametric efficiency bound of Chamberlain (1982) and has the well known form:

D = Eπ[∇θg(z, θ0)]

S = Eπ[g(z, θ0)g(z, θ0)′]
√
n(θ̂EL − θ0) →d N(0, (D′SD)−1)
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The MPEC formulation of the EL estimator does not change the asymptotic behavior. It should
be noted that the expectations above are not evaluated with 1

n weights for each zi but rather the
πi weights obtained via the empirical likelihood estimator. The only difference is that D requires
computing the Jacobian of the moments not in the unrestricted way that MPEC does, but along
the manifold of the constraint Ψ(P, θ) (in the case of BLP along the constraint Sjt = sjt(δ, θ).

The MPEC formulation of EL estimators also allows for testing within the optimization problem.
We are often concerned with testing an s dimensional restriction on our parameters such that
R(θ0) = 0. We can simply incorporate this as an additional equilibrium constraint and re-estimate:

θ̂0 = arg min
θ,π1,...,πn

−
n∑
i=1

log πi s .t. R(θ) = 0

n∑
i=1

πig(zi, θ) = 0

n∑
i=1

πi = 1 − πi ≤ 0 (16)

Following Kitamura (2006) we can construct the empirical likelihood ratio (ELR) statistic, where
s = dim(Θ)− dim(R):

r = −2
(
l(θ̂0)− l(θ̂EL)

)
∼ χ2

s (17)

In many economic models the quantity of interest is often some other prediction of the model (such
as an average price elasticity in the BLP case), that is not merely a function of the parameters, but
also of the data. For example, many statistics of interest are of the form E[a(z, θ)] =

∫
a(z, θ)dµ.

It is well known in the empirical likelihood literature (Brown and Newey 1998), that we can obtain
more efficient estimates using the empirical likelihood mean, than we could under the 1

n sample
mean:

E[a(z, θ)] =
∑
i

π̂i,ELa(zi, θ̂EL) (18)

We might also consider testing the hypothesis that E[a(z, θ)]] = b. This can be viewed as an
overidentifying restriction. We augment the moment conditions and obtain the constrained likeli-
hood value l(θ0) (Kitamura 2006). The empirical log likelihood ratio function tests overidentifying
restrictions and and can be constructed following (Owen 2001):

elr(θ) = −2[l(θ) + n log n]

r = elr(θ0)− elr(θ̂EL)

Under the null this should also have χ2
s distribution where s is the dimension of the restriction. This

is a special case (for empirical likelihood) of the robust confidence interval construction procedure
of Guggenberger and Smith (2005) that involves inverting the test statistic.

A.3 Ill-Conditioned Covariance Matrices

We begin by considering the BLP moment conditions E[g(zjt, θ)] = E[(δ − xjtβ)Zjt] = 0 ∈ Rm.
This implies that the covariance of the moment conditions is Ω0 = E[g(zjt, θ0)′g(zjt, θ0)] with sample

analogue Ω̂ = 1
n

∑
j,t[g(zjt, θ)

′g(zjt, θ)]. Under IID sampling and four finite moments, we know that

Ω̂→p Ω0 at rate 1√
n

so long as m
n → 0.

Much of the literature on GMM (Hansen 1982) or GEL (Newey and Smith 2004) assumes that
Ω is full rank and hence invertible. This is reasonable for asymptotic results because over the m×m
field of real matrices, the Lebesgue measure of the set of non-invertible (zero determinant matrices)
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is zero. For real square symmetric matrices this implies that that det(Ω) =
∏m
i=1 λi 6= 0 or that all

eigenvalues are nonzero. Like all covariance matrices, Ω0 is positive semi-definite, which implies the
even stronger condition that λi > 0 ∀i.

However, in finite sample [Ω̂]−1 may be a poor approximation of Ω−1
0 if the matrix is ill-

conditioned. The ill-conditioning results when the minimum eigenvalue λmin(Ω0) is very small
or vanishing. This implies that small changes in Ω̂ result in large changes in Ω̂−1.

Consider Ω̂ = Ω0 + op(
√
n). There is a well-known result in numerical linear algebra which

considers a perturbation to the system Ax = b so that x̂ = (A + ∆A)−1(b + ∆b) and considers the
effect on the value of the solution x on the logarithmic scale (Quarteroni, Saleri, and Gervasio 2010):

‖x− x̂‖
‖x‖

=
K(A)

1− λmax(∆A)/λmin(A)

(
λmax(∆A)

λmax(A)
+
‖∆b‖
‖b‖

)
≤ K(A)

For a normal matrix the condition number is the ratio of the extreme eigenvalues K(A) = λmax(A)
λmin(A) .

Even though (Ω̂−Ω)→p 0 as the sample covariance matrix converges to the population covariance
matrix, in finite sample the inverse may be badly behaved as K(Ω) is routinely on the order of 106

or more.
One special matrix known to be ill-conditioned is the Vandermonde Matrix. That matrix has

the form:

V =


1 z1 z2

1 · · · zk1
1 z2 z2

2 · · · zk2
...

...
...

1 z2 z2
n · · · zkn


This is a similar to instrument matrices commonly employed in econometrics when considering con-
ditional moment restrictions of the form E[ξ|zi] = 0 or to approximate optimal instruments in a
nonlinear setting E[ξ′f(zi)] = 0. This approach is prevalent throughout the BLP literature, for
example Dubé, Fox, and Su (2012) construct 42 instruments from higher-order interactions of re-
gressors xjt and instruments zjt. Interactions of instruments are also employed in the approximation
of the optimal instruments in Berry, Levinsohn, and Pakes (1995).

There has been a recent literature on regularization approaches to estimating covariance matrices
and the ill-conditioning problem including Knight and Fu (2000), Bickel and Levina (2008), Caner
(2008), Caner and Yildiz (2012). One of the simplest suggestions (Carrasco 2012) is to consider the
first k principal components of the instruments Z. The Singular Value Decomposition (SVD) of Z ′Z
allows for representation Z = UDV ′ where D is a diagonal matrix corresponding to the square roots
of the eigenvalues of Z, and the columns of U correspond to eigenvectors of ZZ ′ and the columns of
V correspond to eigenvectors of Z ′Z. The idea is to choose an approximation on the orthonormal
basis of eigenvectors that nearly spans the vector space Z ′Z, which by sorting the eigenvalues (and
the corresponding eigenvectors) by descending magnitude and choosing only eigenvalues above some
threshold. Ideally, this threshold is chosen to minimize the MSE criteria in the many instrument
selection problem presented in Donald and Newey (2001) or Newey and Windmeijer (2009). In the
Monte Carlo data, the MSE minimizing number of instruments is usually 4, which I fix across Monte
Carlo trials.

In an alternative specification, rather than selecting components in descending order of eigen-
values, I follow Grant (2012) and select the normalized principal components corresponding to the
largest coefficients in the regression on price (i.e.: the strongest instruments) pjt = γzPCAjt + ηjt.

There, I select the three principal components corresponding to the largest values of γ2 and label
them “PC2 Instruments”.20 Because the performance is generally worse than the spectral cutoff

20The rationale given in Grant (2012) is that the principal components are selected to explain
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strategy of Carrasco (2012) described above, I do not present those results.

A.4 Analytic Bias Expressions

Here I write the expressions for analytic bias in GMM as found in Newey and Smith (2004) and
plug in for the sample analogues of the BLP problem:

gi = gi(β0) = zjtξjt

Gi =
∂ξjt
∂θ

= zjt × [Xjt pjt
∂ξjt
∂σ

]

Ω = E[gig
′
i] =

 1

J · T

J∑
j=1

T∑
t=1

ξ2
jtzjtz

′
jt


G = E[Gi] =

1

J · T

J∑
j=1

T∑
t=1

zjt × [Xjt pjt
∂ξjt
∂σ

]

Σ = (G′Ω−1G)−1, H = ΣG′Ω−1, P = Ω−1 − Ω−1GΣG′Ω−1

Which gives the analytic bias expressions:

BG = −Σ

 1

J · T

J∑
j=1

T∑
t=1

[Xjt pjt
∂ξjt
∂σ

]′zjtPzjtξjt


BΩ = H

 1

J · T

J∑
j=1

T∑
t=1

ξ3
jtzjtz

′
jtPzjt


BI = H

 1

J · T

J∑
j=1

T∑
t=1

zjt[Xjt pjt
∂ξjt
∂σ

]Hzjtξjt


The Jacobian term

∂ξjt
∂θ depends on the nonlinear parameters σ, where

∂ξjt
∂σ =

∂ξjt
∂δ︸︷︷︸
Ijt

·∂δjt∂σ =
∂δjt
∂σ We

can compute this for a single market t using the implicit function theorem (following the Appendix
of Nevo (2000)):

∂δjt
∂σ

= −


∂s1t
∂δ1t
· · · ∂s1t∂δJt

...
. . .

...
∂sJt

∂δ1t
· · · ∂sJt

∂δJt


−1

∂s1t
∂σ1
· · · ∂s1t∂σK

...
. . .

...
∂sJt

∂σ1
· · · ∂sJt

∂σK


the variation in the instrument matrix Z but not necessarily the endogenous regressor pjt. It might
be that the component corresponding to the dominant eigenvalue of Z is uncorrelated with pjt or
the component corresponding to the smallest eigenvalue is the only component correlated with pjt.
This is resolved by selecting components based on the fraction of variance in pjt that they explain,
which is a monotone function of the regression coefficient γ2 once the Z has been normalized so
that all columns have equal variance. In practice, I have tried it both ways, and the BI term is
generally substantially larger under the PC2 instruments than under the PC instruments, though
the BG term is slightly smaller on average.
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The components of the two matrices are just the partial derivatives with respect to (δ, σ) which are
computed in the MPEC estimator as the Jacobian of the share constraint.

The inclusion of the
∂ξjt
∂θ term has a negligible effect on the bias (and generally the bias of σ is

small). The primary source of the bias generally arises from the correlation of pjt with zjt and ξjt
in BG.
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