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Jon Vogel, Kate Ho, Juan Carlos Suŕez Serrato, Sebastien Bradley and seminar participants at Columbia University,
Wharton BEPP, Duke University, NYU Stern, the National Tax Association 2014 Annual Conference, IIOC 2015,
the 2016 NASM of the Econometric Society and the Ross School of Business at the University of Michigan. Any
remaining errors are our own. Researchers own analyses calculated (or derived) based in part on data from The
Nielsen Company (US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center
for Marketing Data Center at The University of Chicago Booth School of Business The conclusions drawn from the
Nielsen data are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had
no role in, and was not involved in analyzing and preparing the results reported herein

1



1. Introduction

Pass-through describes how changes in costs relate to changes in prices and conveys the extent

to which cost shocks are borne by consumers or firms. As a measure of incidence, pass-through

determines the welfare implications of cost shocks such as exchange rate fluctuations, commodity

price spikes and taxes. Higher retail pass-through rates mean that firms are better able to shift the

burden of cost shocks on to consumers while low pass-through rates indicate that the incidence of

a cost shock is largely borne by firms.

In this paper we examine the pass-through of recent increases in state excise taxes on distilled

spirits. We focus on taxes on distilled spirits for three main reasons. First, distilled spirits are one

of the most heavily taxed commodities in the United States with the combined state and federal

tax burden comprising as much as 30-40% of the retail price. Second, the recent availability of

high-quality scanner data across a number of retail establishments and unique wholesale price data

allow for better measurement of price changes in this product sector than before. Finally, in the

last decade alcohol taxes have been subject to numerous proposed and enacted policy changes with

many states raising alcohol taxes while at the federal level the Tax Cuts and Jobs Act of 2017

reduced federal excise taxes on alcohol. Understanding the welfare implications of existing excise

taxes will help inform future reforms.

We first provide descriptive evidence of price responses to tax increases and to match the prior

literature estimate pass-through rates using linear regression. Like prior studies, we find evidence

of over-pass-through, particularly for smaller products which experienced smaller tax increases,

though estimates vary over different horizons. Examining price changes we next document the

pricing behaviors that underlie these responses. We find that the majority of price changes are

made in large, fixed increments – most frequently in whole-dollar amounts – to one of a handful

of favored price points like prices ending in $0.99. Retailers do not react to taxes by smoothly

increasing prices but instead either leave a price unchanged or increase the price sharply most

often by $1 or $2. In light of the pricing behaviors we document and the rigidities they imply,

we estimate discrete choice models to better approximate the pricing patterns we see in the data.

Finally, we use these estimates to predict how prices will change in response to tax increases of

different magnitudes and simulate the resulting incidence and social cost of tax revenue. The non-

linear nature of the price responses to tax increases means that modestly smaller or larger taxes

can lead to sharply different pass-through rates with very different incidence and welfare costs. For

example, our simulations show that increasing the tax by $0.52 per liter rather than $0.375 per

liter leads to a ten-fold increase in the deadweight loss per dollar of tax revenue raised.

We take a different, though complementary, approach from the literature on optimization fric-

tions. Instead of exploiting discontinuities in the tax schedule as a source of exogenous variation

to recover a frictionless, long-run structural elasticity, we explicitly model the endogenous but dis-

continuous pricing strategies of firms in response to taxes. Our goal is not to recover the structural
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relationship between prices and taxes that would arise in a frictionless world, but rather to model

how pricing rigidities would respond to alternative tax policies, and to understand the welfare

implications of tax increases in such a world.

Pass-through rates exceeding unity have been estimated by previous studies focused on a smaller

number of alcoholic beverage products. Cook (1981) found that the median ratio of annual price

change to tax change for leading brands in the 39 state-years that had tax changes between 1960

and 1975 was roughly 1.2. Young and Bielinska-Kwapisz (2002) followed the prices of seven specific

alcoholic beverage products and estimated pass-through rates ranging from 1.6 to 2.1. When

Alaska more than doubled its alcohol taxes in 2002, Kenkel (2005) reported that the associated

pass-through was between 1.40 to 4.09 for all alcoholic beverages, and between 1.47 to 2.1 for

distilled spirits. All three studies report substantial product-level heterogeneity in the degree of

pass-through. The over-shifting of taxes is not limited to taxes on distilled spirits, nor are all excise

taxes over-shifted. For sales taxes Poterba (1996) found that retail prices of clothing and personal

care items rise by approximately the tax amount while Besley and Rosen (1999) could not reject full

pass-through for some goods, but found evidence of over-shifting for more than half of the goods

they studied. In another retail setting where price points may be important, Besanko et al. (2005)

found that 14% of wholesale price-promotions were passed on at more than 100% into retail prices.1

In fuels, where price increments are very small (often one cent) relative to tax changes, studies have

found that gasoline and diesel taxes are fully passed through to consumers though prices may not

fully adjust when supply is inelastic or inventories were high (Marion and Muehlegger, 2011) and

that gas tax holidays are pass-though quickly but only partially to consumers (Doyle Jr. and

Samphantharak, 2008). Harding et al. (2012) found that cigarette taxes were less than fully passed

through to consumers, while DeCicca et al. (2013) could not reject full pass-through of cigarette

taxes on average.

Intuition suggests that excessive pass-through indicates that a market is characterized by imper-

fect competition. However, pass-through rates greater than unity generally require not only market

power among suppliers but also curvature restrictions on demand. Fabinger and Weyl (2012) de-

rive a convenient expression relating pass-through, ρ, to market characteristics under symmetric

imperfect competition with linear costs:

ρ =
1

1− θµ′(p)

where µ(p) = −Q′(p)
Q(p) , and θ is similar to a conduct parameter (θ = 1 corresponds to monopoly, and

θ = 0 is perfect competition).2 As θ → 0, ρ→ 1, but whether the pass-through rate approaches 1

1It is worth noting that price changes at the time of tax changes may be less costly for retailers because consumer
awareness of the tax change may lower ‘customer antagonization’ costs (Anderson and Simester, 2010).

2The definition of µ(p) comes from the monopolist or cartel’s profit maximization problem which yields (p− c) =

−Q
′(p)
Q(p)

.
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from above or below depends on µ′(p), the log-curvature of demand.

Most results showing excessive pass-through like Katz and Rosen (1985), Seade (1985), and

Stern (1987) employ a single-product homogenous good framework and rely on Cournot competition

with conjectural variations in addition to curvature restrictions. Besley (1989) and Delipalla and

Keen (1992) employ a Cournot model with free entry and exit, and rely taxes pushing out competing

brands to generate overshifting.3 Because Cournot competition may not be a realistic assumption

for many taxed goods including distilled spirits, Anderson et al. (2001) develop similar results under

differentiated Bertrand competition. The common thread of all of these studies is that demand

must be sufficiently (log)-convex in order to generate overshifting. As demand becomes too convex,

however, for example convex enough to generate the pass-through rates of 3 or 4 estimated for

some states and product sizes here, Anderson et al. (2001) point out marginal revenue curves may

no longer be downward sloping. Thus theoretical attempts to justify over-shifting of the degree we

observe may lead to unrealistic restrictions on demand curves.4

In a recent and notable departure from this theoretical literature, Hamilton (2009) finds that

excise taxes can be overshifted when demand is sufficiently concave rather than convex but requires

strategic complementarities between prices and variety and that higher taxes lead to reduced variety

of product offerings. As we observe over-shifting, but not brand exit in response to the tax this

long-run explanation of over-shifting is also not well matched to our data. Instead, we show that

a nominal rigidity like price points can generate over-shifting or under-shifting of taxes without

restrictions on the curvature of the underlying demand curve or reduced product variety.

The focus on price points among retailers is not unique to our setting. A literature which

documents the presence of price points as a source of nominal rigidities in macroeconomics includes:

Kashyap (1995), Knotek (2016) and Levy et al. (2011).5 Other work has focused on the role of

“convenient prices” – round prices that coincide with monetary denominations (Knotek, 2008),

(Knotek, 2010).6

3This literature is nicely summarized in Fullerton and Metcalf (2002).
4Fabinger and Weyl (2012) categorize the pass-through rate and marginal revenue properties of several well-known

demand systems, and show that satisfying both properties is difficult but possible under certain forms of Frechet and
almost ideal demand systems (AIDS) Deaton and Muellbauer (1980).

5A deeper question is: “Why do we observe ninety-nine cent prices?” One potential explanation is that consumers
exhibit “left digit bias” and do not fully process information. This idea is explored in Lacetera et al. (2012). Another
explanation might be that firms consider only a smaller number of discrete price points for cost or information
processing reasons. For further discussion of just-below prices please see Schindler (2011). Basu (2006) demonstrates
that in oligopolistic markets with fully rational consumers who nonetheless exhibit left-digit bias firms benefit when
consumers ignore the last digits of a price, even under Bertrand competition. In recent work Shlain (2018) uses
Nielsen data to show that consumers respond to a one cent increase from a 99-ending price as if it were a 15 to 25
cent difference and firms respond to this bias with high shares of 99-ending prices and missing low-ending prices,
though they do not fully exploit the profit potential of left-digit bias. While interesting, these “why” explanations are
beyond the scope of our paper. Other work shows that left-digit bias can benefit firms. Krishna and Slemrod (2003)
suggest that tax authorities themselves may exploit left-digit bias in setting tax rates like for example the 39.6% top
tax rate that prevailed from 1993 until 2001.

6Like “convenient prices”, “price points” are an equilibrium outcome rather than a primitive of the retailing
environment, though we do not model the full equilibrium.
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Ours is first examination of the implications of price points for tax incidence and efficiency.

The phenomenon of price points extends beyond distilled spirits. Tabulations of the Nielsen data

demonstrate that prices are concentrated at a handful of price points in many product markets.

Approximately 40.1% of all prices are set at at one of the four most common price points for each

product category. At the product category level, in more than 49% of the 1,113 product categories

of the Nielsen data, at least half of all prices in each category are set at one of the category’s

four most common price points. The pricing patterns that we observe are not unique to spirits;

retailers utilize price points in many product markets, making our findings potentially relevant for

considerations of broader excise taxes.

2. Alcohol Taxation and Industry Background

Our paper focuses on state excise taxes, which are remitted by wholesalers and usually levied by

volume rather than ethanol content. In addition to state taxes the federal government taxes distilled

spirits by ethanol content at $13.50 per proof-gallon, or $4.99 for a 1.75L bottle of 80-proof vodka.7

The statutory incidence of federal excise taxes falls on the producers of distilled spirits or is due

upon import into the United States while wholesalers remit state excise taxes. As such posted

prices at the retail and wholesale levels include both state and federal excise taxes. In some states,

there is an additional sales tax tacked on to the retail price that applies only to alcoholic beverages,

while in others alcoholic beverages are exempt from the general sales tax.

As a consequence of the 21st Amendment, states are free to levy their own taxes on spirits, as

well as regulate the market structure in other ways. There are 18 control states, where the state

has a monopoly on either the wholesale distribution or retailing of alcohol beverages (or both).8

Connecticut, Illinois, Louisiana, and 29 other states are license states. License states follow a three-

tier system where vertically separated firms engage in the manufacture, wholesale distribution, and

retailing of alcohol beverages. Almost all license states have restrictions that prevent distillers from

owning wholesale distributors, or prevent wholesale distributors from owning bars or liquor stores.

In the three states we study, wholesalers and retailers are fully distinct.9

All of these taxes are of course levied in part to address the negative health and public safety

externalities of alcohol. Governments, however, also tax alcohol for the explicit purpose of raising

revenue.10 Few states had changed their alcohol taxes over the prior decade, but following the onset

7Taxes are stated in customary units of gallons, though products are sold internationally in standardized metric
units of 750mL, 1L, and 1.75L bottles. A proof-gallon is 50% alcohol by volume (100 Proof) at 60 degrees Fahrenheit.

8The monopoly applies to all alcohol beverages in some states, and in others to distilled spirits but not wine or
beer. Control states can adjust markups or taxes to raise revenue. A few control states, such as Maine and Vermont,
nominally control the distribution and sales of spirits but contract with private firms which set prices. Control states
have been the subject of recent empirical work examining the entry patterns of state-run alcohol monopolies Seim
and Waldfogel (2013) and the effects of uniform markup rules Miravete et al. (2018).

9States have other restrictions on the number of retail licenses available, or the number of licenses a single chain
retailer can own. States also differ on which types of alcoholic beverages, if any, can be sold in supermarkets and
convenience stores.

10For example, in 2015 Governor Sam Brownback of Kansas proposed raising alcohol and tobacco taxes to help close
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of the Great Recession, eight states passed legislation affecting alcohol taxes. We report those tax

changes in Table 1.

Our analysis investigates tax changes in three states: Connecticut, Illinois and Louisiana. We

focus on these three states because unlike Kentucky, Maryland and Massachusetts which only

adjusted their ad valorem sales taxes, Connecticut, Illinois and Louisiana changed their unit excise

taxes. Further, our primary dataset, the Kilts Nielsen Scanner data, provides sufficient coverage of

these states. We lack sufficient data to study the 2013 excise tax increase (and sales tax decrease)

in Rhode Island or the 2009 excise tax increase in New Jersey, in part because those states only

allow spirits to be sold in stand alone liquor stores.

Prior to July 1, 2011, the state of Connecticut levied a tax on the volume of distilled spirits

(independent of proof) of $4.50 per gallon, which worked out to $2.08 per 1.75L bottle.11 After

July 1, 2011, the tax increased to $5.40 per gallon, or $2.50 on a 1.75L bottle, for an increase of

$0.24 per liter. In September 2009, Illinois increased its excise tax from $4.50 per gallon to $8.55

per gallon, or an additional $1.07 per liter. Louisiana raised taxes in April 2016 only slightly from

$2.50 to $3.03 per gallon or $0.14 per liter. The Louisiana tax increase was initially legislated to

be temporary but was made permanent before its expiration.

It should be noted that Connecticut and Louisiana also raised their sales taxes from 6% to

6.35% and from 4% to 5%, respectively, at the same time that they increased their alcohol excise

taxes. Our empirical analysis examines the impact of the specific tax increase on sales-tax-exclusive

retail prices. As sales taxes are levied at the time of retail sale and added onto the posted price,

any pass-through of the sales tax increases would lead to lower retail prices. Thus the pass-through

rates we report for Connecticut and Louisiana potentially under-estimate the true excise tax pass-

through rates. We also estimate pass-through rates using sales-tax-inclusive prices; our estimates

are mechanically larger but statistically indistinguishable from the results presented here.

Our empirical exercise focuses more specifically on the July 2011 tax increase in Connecticut

for a few reasons that exploit institutional details around the Connecticut tax increase. First,

the Connecticut state regulator forbids wholesalers or retailers from engaging in temporary sales,

coupons, price promotions, or giveaways; retail “sales” must be registered with the Department

of Consumer Protection in advance, and are limited to a small number of clearance items. The

retail price data reveal few if any temporary sales; ignoring the first week of the month (which may

cover two months), there is virtually no within product-store-month price variation in Connecticut.

Because weekly prices in the Nielsen data are calculated as revenue divided by unit sales, this

means we can say with some confidence that the prices observed in our data accurately describe

the prices observed by consumers in Connecticut. It also means that we do not need to distinguish

the state’s $648 million budget shortfall. For more details see http://www.kansas.com/news/politics-government/

article6952787.html. In 2016, Governor Jon Bel Edwards of Louisiana proposed a similar tax increase which would
raise $27 million, as part of reducing a $900 million deficit, see http://www.nola.com/politics/index.ssf/2016/

03/house_passes_new_alcohol_tax_h.html.
11Many states levy lower tax on lower-proof ready-to-drink products, or lower-proof schnapps and liqueurs.

6

http://www.kansas.com/news/politics-government/article6952787.html
http://www.kansas.com/news/politics-government/article6952787.html
http://www.nola.com/politics/index.ssf/2016/03/house_passes_new_alcohol_tax_h.html
http://www.nola.com/politics/index.ssf/2016/03/house_passes_new_alcohol_tax_h.html


between general price changes and short-term markdowns.12 A second important provision of the

Connecticut tax increase ensured that the tax was uniform on all units sold after the tax increase.

Retailers (and wholesalers) were subjected to a floor tax on unsold inventory as of July 1, 2011.

By making the tax impact immediate for all units, this means that we can be certain all units sold

at retail after July 1 were subject to the higher tax rate.13

The institutional details for the Illinois and Louisiana tax increases are a bit different. Both

states allow temporary sales, loyalty card discounts, and coupons on distilled spirits. This means

we should be cautious about interpreting weekly variation in average prices paid (particularly

small changes) as actual price changes by retailers. Likewise, we cannot find evidence either way

for whether a floor tax was employed in Illinois and Louisiana, so there may have been identical

products on the retailer’s shelf taxed under different regimes, and thus the effect of tax changes on

retail prices may have been less immediate.

3. Data

Our primary data source is the Kilts Nielsen Scanner dataset. The Nielsen data are a substantial

improvement over previous price data in the alcohol tax literature; much of the prior literature

relies on the ACCRA Cost of Living Index data, which survey a small number of products and

stores in each state. Nielsen provides weekly scanner data, which track revenues and unit sales at

the UPC (universal product code) level for a (non-random) sample of stores in all 50 states, though

in practice we only have sufficient data on distilled spirits from 34 states.14 These weekly data

are available from 2006-2016, and include data from both stand-alone liquor stores as well as from

supermarkets and convenience stores.

Participation in the Nielsen dataset is voluntary, and not all stores participate. The data

contain many more supermarkets than stand-alone liquor stores, and many stores in the sample

are affiliated with a larger chain. This leads to better coverage for states where spirits are sold in

supermarkets. In Connecticut, we observe 34 (mostly larger) stand-alone liquor stores. Because

spirits are also available in supermarkets in Illinois and Louisiana, we observe 884 and 310 stores

respectively. While the raw data are organized weekly, for our analyses we aggregate our data to

the store-product-month level or the store-product-quarter level. For prices, we use the price from

the last full week entirely within that month or quarter.15

12How one handles temporary sales is one of the principal challenges in the empirical macroeconomics literature on
estimating menu costs. See Levy et al. (1997), Slade (1998), Kehoe and Midrigan (2007), Nakamura and Steinsson
(2008), Eichenbaum et al. (2011), Eichenbaum et al. (2014).

13The floor tax meant that any product not in the hands of consumers would be subjected to the new tax rate
rather than the old tax rate, and prevented retailers from evading the tax by placing large orders in advance of the tax
increase. It did not, however, prevent consumers from stockpiling alcoholic beverages in advance of the tax increase,
though we find no evidence of an anticipatory price effect.

14We lack sufficient data from 16 states, many of which are control states (in italics): Alabama, Alaska, Hawaii,
Idaho, Kansas, Montana, New Hampshire, New Jersey, North Carolina, Oklahoma, Oregon, Pennsylvania, Rhode
Island, Tennessee, Utah, Vermont, Virginia.

15For additional details on aggregation, please consult Appendix C.
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We weight all regressions by a product’s annual sales in the same store for the calendar year

prior to tax change. This means we weight products in Connecticut based on 2010 sales, Illinois

based on 2008 sales, and Louisiana based on 2015 sales.16 We use these weights because price

changes are more important for more popular products.17 One downside of this choice of weights is

that products with no sales during these years are effectively dropped from the sample. To address

differences in the number observations for each state, we normalize our weights so that each state

receives equal weight in our overall sample.18

We exclude 1L bottles from Illinois and Louisiana because we have fewer than 8,000 such

observations and they represent a very small fraction of sales; we keep them for Connecticut where

they represent around 8% of the market. For more detailed summary statistics please see Appendix

A.

For the state of Connecticut only, we are able to use a special dataset we constructed of the

(tax inclusive) prices that wholesalers charged retailers from August 2007 to August 2013.19. As

one might expect, and as our results will indicate, wholesale prices serve as an important state

variable for retailer pricing decisions. For some welfare calculations, we assume a markup of µ =
p
mc ∈ {1.25, 1.5, 2.0}, with 1.5 being close to the average markup we estimate in our other work

Conlon and Rao (2015).

4. Descriptive Evidence and Linear Pass-Through Estimates

4.1. Monthly Price Changes

We first summarize observed price changes in each state by month and year, highlighting the month

when taxes increased. Figure 2 plots unweighted mean monthly retail price changes averaging over

all years and for the year of the tax change for Connecticut, Illinois, and Louisiana. The plots

demonstrate three facts. First, there is a regular, seasonal component to price changes with prices

increasing in some months like January and July and decreasing in others like February. Second, in

both Connecticut and Illinois retail prices immediately and sharply increased in the month of the

tax hikes with mean retail price increases of $0.316 in Connecticut and $0.651 in Illinois, which are

substantially larger than price increases in those months in other years, and larger than the average

tax increase. In Louisiana where taxes were increased by $0.15 on average, prices increased only

modestly by $0.186 in the month of the tax change. We find evidence of delayed responses with

an even larger response of $0.787 in Illinois in the month following the tax change and a smaller

than typical May price decline in Louisiana. Finally, we don’t find much evidence (except perhaps

16Our weighting is meant to mimic the Laspeyres price index. We don’t weight using contemporaneous sales
(Paasche), because we expect that demand curves slope downwards and we don’t want to systematically underweight
products with larger price increases.

17In total we observe 6,785 products many of which have extremely low sales. We consider restricting the sample
to the top 1000 or top 500 products and it has almost no effect on any of the estimates we report.

18Later we also balance our weights so that each state and product size combination receives equal weight.
19For more details on this dataset and how it is constructed, please consult Appendix C
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for Connecticut’s $0.133 June increase) of prices increasing in anticipation of the tax change, even

though the laws were passed months prior.

These average price changes don’t tell the entire story and are driven in part by more fre-

quent price changes. Figure 3 plots the sales-weighted fraction of retail products experiencing price

changes and price increases each month in each state. There is a substantial spike in the frequency

of price adjustment (and especially price increases) commensurate with the tax increases in Con-

necticut (July 2011) and Illinois (September 2009). The spike in Connecticut is more evident in

part because the state bans temporary sales resulting in lower baseline adjustment frequencies. In

Louisiana, however, the April 2016 tax change is associated with an increase but not a large spike in

the frequency of price changes or increases. Instead price changes and increases spike three months

later in July 2016, a month generally associated with price increases in Louisiana. In total these

patterns suggest we should analyze the price impact of a potential tax change over a longer window

of time (such as three months) rather than simply examining the immediate impact.

4.2. Linear Regression Estimates of Pass-Through

Following the large literature on pass-through, we measure the pass-through rate using a linear

regression of price changes ∆pjst on tax changes ∆τjst where j denotes product, s denotes store,

t denotes month and the ∆ operator denotes the difference taken over time within a store and

product. We let ∆ denote a (1, 3, 6)− month difference. We follow the convention for excise tax

pass-through and measure both changes in dollars per bottle. Thus the pass-through rate, ρ(·),
describes the expected price increase (in dollars) for a $1 tax increase.

We estimate the pass-through parameter with fixed effects for UPC, as well as month-of-year

and year.

∆pjst = ρjst(X,∆τ) ·∆τjt + β∆xjst + γj + γt + εjst (1)

We have written the pass-through rate ρjt(X,∆τ) as a general function that might depend on

(j, t) as well as other covariates X, or the size of the tax change itself, ∆τ . Most of the literature

assumes that for “small” tax changes, pass-through is approximately constant. For example, Besley

and Rosen (1999) and Harding et al. (2012) assume a single pass-through rate ρjt(X,∆τ) = ρ, or

product specific pass-through ρjt(X,∆τ) = ρj respectively.

We estimate the regression (1) pooling observations from all three states, but interacting ρjt(·)
with each state and package size (750mL, 1L, 1.75L) which we report in Table 2. This is a semi-

parametric regression in the sense that for each observed value of ∆τjt we estimate a distinct

pass-through rate. We report seven estimates (we drop 1L bottles in Illinois and Louisiana) for

one-month, three-month, and six-month horizons to address the concern that retail prices may not

respond immediately.20 We provide two sets of estimates in separate panels. The top panel reports

20For example, Figure 2 indicates retail prices may vary with a predictable schedule not aligned with tax changes.
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the pass-through rates estimated from the full sample, while the bottom reports the pass-through

estimates conditional on a price changes. Under the hypothesis that all tax changes are smoothly

passed on through price changes, we would expect these two sets of parameter estimates to be

identical.

There are some important patterns which emerge from Table 2. The first is that pass-through

is nearly immediate in Connecticut where the one-month and three month estimates are nearly

identical; while pass-through is slower in Illinois and Louisiana. This is consistent with the patterns

observed in Figure 2. This may be because the timing of the tax change in Connecticut was

commensurate with the month when retailers traditionally adjusted prices, or it may be because

of the floor tax. Later, at the six month window pass-through estimates often (though not always)

attenuate. In part this may be because retailers adjust prices for other reasons in addition to the

tax change, this is particularly true in Louisiana where large price changes are more frequent (see

Figure 2 and Figure 3).21

When we focus on three-month pass-through rates, we see that five of the seven state-size

combinations have estimated pass-through rates which are statistically > 1 and are closer to 2 than

to 1. Consistent with prior work on taxation of distilled spirits, this suggests that tax changes are

overshifted, or that a $1.00 tax change is met with a more than $1.00 price change.22 In general, the

pattern also suggests that larger tax changes are met with smaller pass-through rates. To see this

relationship more explicitly we plot the seven pass-through estimates for three-month price changes

in the left panel of Figure 4. When we pool the data for all states and estimate the pass-through

rate as a weighted linear function of the tax change we find that ρ(∆τ) = 1.76− 0.51 ·∆τ , which

we also plot on Figure 4.23 This implies that the pass-through rate of an infinitesimal tax increase

would be 176% and for a $1.00 tax increase would be 125%.

If we compare the left and right panes of Table 2, we see pass-through estimates conditional

on any price changes are substantially larger than overall estimates of pass-through. This suggests

that tax changes were not smoothly passed on into price changes but instead that a large number of

products experience no price change in response to the tax, while other products experience a larger

price change than the average pass-through rate suggests. These conditional estimates along with

the pass-through rates implied by a $1 and $2 price change are plotted in the lower panel of Figure

4. If the observed tax changes resulted in price changes of exactly $1, estimated pass-through rates

would lie on the first dotted line; if all prices changed by $2, the estimates would lie on the second

dotted line. What we observe is that both Louisiana estimates and the Connecticut estimate for

While Section 2 discusses that absent an explicit floor tax Louisiana and Illinois retailers may hold inventories not
subjected to higher tax rates for several months.

21Also recall that we include state-product specific fixed effects (trends) in (1) which are generally positive.
22While some of this overshifting could reflect a combination of sticky retail prices and forward-looking expectations

of future marginal cost increases, these factors do not account for the heavy use of price points we document in Section
5.

23We consider higher order functions of ∆τ . Both the quadratic and cubic function are indistinguishable from the
linear function.
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750mL products lie very close to the $1 line while the Illinois estimate for 1.75L products lies close

to the $2 line and IL estimate for 750mL products suggests a mix of $1 and $2 price changes. The

other Connecticut estimates for 1L and 1.75L products at three-months are somewhat lower than

implied by a strict $1 price change rule though the one-month conditional estimates (3.29 and 2.00)

would line up well.

This suggests the correct way to think about the pass-through rate may not be as a constant ap-

plied to any size tax change, but rather that the pass-through rate we measure may be a mechanical

relationship between large price change increments and the size of the tax.

5. Price Points and Pass-Through

The analyses in the previous section suggest that three-months is a more appropriate interval to

analyze retail responses to tax changes. Therefore, we document several facts by examining the

frequency of price endings and categorizing price changes using quarterly data. We focus on the

idea that retailers choose from a small number of price points and that the bulk of price changes

are in increments of $1.00.

Later, we write down a dynamic model of price adjustment with discrete price points. We show

how to estimate the policy function from the dynamic pricing model using an ordered logit. Using

the ordered logit estimates, we re-calculate pass-through, welfare, and deadweight loss and compare

them to estimates from the linear (constant pass-through) model.

5.1. Observed Price Points

We begin by documenting the relatively small number of price points used by distilled spirits retail-

ers in the Nielsen scanner dataset. From 5,479,724 observations of quarterly prices we construct a

transition probability matrix using just the cents portion of price. A product which sold for $10.99

for two quarters in a row would be recorded as a price that previously ended in $0.99 cents and still

is priced at a price ending in $0.99, as would a product which increased in price to $11.99. Table

3 presents transition frequencies for each state detailing how the cents portions of prices compare

from quarter to quarter.

As these matrices show, retailers set prices at and change prices to a small set of price points

that account for a large share of overall prices. The most common price ending is 99 cents and it

accounts for 78% of prices in Louisiana, 80% in Illinois, and 91% in Connecticut. Not all retailers

use 99 cents as their default price ending, one chain in Illinois uses 97 cents and two chains in

Louisiana use 49 cents instead. We aggregate price endings outside of the ten most common into

the other category, which ranges from 1.35% in Connecticut to 5.93% in Illinois.24

24If we normalize the rows of each matrix to sum to one, we can treat these as Markov Transition Probability
Matrices. In the long-run (ergodic) distribution we find that the share of prices outside of the ten most common
price points would be 1.22%, 5.77% and 3.46%, meaning that the long-run stationary distribution of prices and the
marginal distribution of prices are highly similar.
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We expect that Table 3 understates the actual concentration of price points, even though the

two most common price endings account for at least 85% of prices in every state. In addition to

alternative conventions among a few chains, some retailers appear to use other price points (such

as 19 cents or 95 cents) as internal tracking for sale or clearance items. Further, as we discuss in

Section 3, Nielsen reported prices, particularly in Illinois and Louisiana where sales and discounts

are more common, may not coincide with any transacted prices when prices change midweek.25 We

try to address these issues by reverse engineering transaction prices when possible, and describe

the steps we take in Appendix D.2, but they remain.

The key consequence of this small number of price points is that when firms adjust prices

they will generally adjust them in larger increments ($1.00, $2.00, $3.00, etc.) We categorize price

changes in Table 4. We report the share of price changes which are whole dollars, and half dollars.

When we focus on (quarterly) price changes during the period of the tax change we see that in

Connecticut 76% of price changes are in whole dollar increments. This share is somewhat lower in

Illinois and Louisiana (around 67% and 64% respectively). The share of half dollar price changes is

also significant (ranging from 6.2% in Connecticut to 12.1% in Louisiana) during this period. The

overwhelming majority of half dollar price changes are ±$0.50 rather than ±$1.50, 2.50, etc.26 It

is likely that some of the price changes labeled as Other or Very Small outside of Connecticut in

Table 4 are the result of midweek price changes, coupons, or loyalty card discounts. Table 4 also

indicates, even during the period of the tax change, a large number of prices are unchanged (almost

60% in Connecticut and nearly 40% in Louisiana and 15% in Illinois). This is consistent with our

regression evidence that prices don’t always respond to tax changes, but when prices do respond,

they respond in large increments.

5.2. A Model of Price Changes with Price Points

The evidence from the previous section suggests that retailers rely on price points and often adjust

prices in whole dollar increments. As a starting point, we consider (a modified version of) the

dynamic price adjustment model of Knotek (2016) where retailers receive flow payoffs:27

πt(pt,mct) =
∑
j

(pjt −mcjt)qjt(p)− φ · I[pjt 6= pj,t−1]− κ · I[pt /∈ P]

The retailer sells product j in period t at price pjt, has a marginal cost mcjt and faces demand

qjt(p). Here retailers deviate from static profit maximization in two important ways: they pay a

25This also helps explain why 99 to 99 transitions are more common in Connecticut than in other states. As we
note in Section 2, Connecticut also does not allow coupons, loyalty cards, and makes temporary sales very difficult.

26We provide a full accounting of price change increments in Appendix Table D5 in Appendix D.2.
27Our version is modified in that we express static profits in terms of prices, marginal costs, and demand q(p) rather

than quadratic distance from the target markup
(
pt
mct
− µt

)2

as in more common in the New Keynesian framework.

This distinction is of no consequence for our empirical implementation.
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menu cost φ in order to adjust prices between t − 1 and t and they pay a penalty κ for deviating

from the set of price points P. In our main specification, we define the set Pt in terms of price

changes so that Pt = pt + ∆pt where ∆pt ∈ {−$1, 0,+$1,+$2,+$3}.28

The retailer solves a dynamic problem by choosing a sequence of price vectors pt ∈ RJ+ to

maximize:

max
pt∈RJ+

∞∑
t=0

βtπt(pt,mct)

which we can write in recursive form where Ωt denotes the state space:

V (pt,Ωt) = max
pt∈RJ+

πt(pt,mct) + βEt+1[V (pt,Ωt+1|Ωt)]

We consider a simplified version of the problem above. We restrict the set of feasible prices that

the retailer can choose to the price points pt ∈ Pt. One way to interpret this is by taking κ→∞
in the model above. This is clearly a simplifying assumption. Given our evidence in Tables 3 and

4 approximately 90% of observations conform to this grid of whole dollar price changes (once we

include zero price changes).29 This seems like a better assumption than assuming that κ = 0 and

pt ∈ RJ+ is unrestricted, which allows prices to adjust continuously as the linear model implicitly

assumes.

We focus on a specific set of counterfactuals which depend only on the policy functions in the

language of Bajari et al. (2007).30 This avoids ever solving for an equilibrium of the pricing problem,

but it means we cannot separately identify the menu costs φ or price point costs κ.31 Because we

have a small number of tax changes, it also means we are limited in our ability to consider changes

in the state variables Ωt or their transition f(Ωt+1|Ωt). We consider a policy function of the form

Pr(∆pjt|∆τjt,Ωt) and ask: “How would prices respond if we held everything else fixed, but varied

the size of the tax change?” This means if we estimate policy functions using three-month changes,

we are explicitly considering how other tax changes would affect three-month price changes. We are

not modeling what might happen in the longer run if higher taxes cause retailers to price differently

28In our empirical specification, we consider robustness tests that expand this set to ∆pt ∈
{−$2,−$1, 0,+$0.5,+$1,+$2,+$3,+$4,+$5}.

29Absent the assumption that κ→∞ a model such as Knotek (2016) implies that ∆pjt follows a distribution that
is neither discrete nor smooth and continuous. Instead it has a finite number of mass points at the points in Pt. Just
estimating such a density would be quite challenging.

30The approach of Bajari et al. (2007) (BBL) is as follows: (a) implicitly assume that an MPE exists, and only
one equilibrium is played (even though there could be multiple equilibria); (b) Estimate the policy functions of the
agents: σ̂r(∆pjt,Ωt), and the transition densities of the exogenous variables: f̂(Ωt+1|Ωt). (c) consider deviations
from the policy functions to recover the parameters of the payoff function including the adjustment costs (φ, κ).

31When prices are chosen among a discrete set, the first-order conditions need not hold exactly, leading to a large
number of potential solutions and no good algorithm to find them. The multiproduct pricing problem is further
complicated by the large state space, as we must keep track of both pt and pt−1 for each product offered, while only
a small number of states are actually observed in the data.
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years later. Likewise, we should be cautious about the interpretation of long-run behavior of agents

outside the model (such as if manufacturers reduce annual price increases in response to the tax

change). If there are menu costs, agents take them into account when making decisions, but we

cannot separate them in welfare calculations.

5.3. Pass-Through with Price Points

In the simplest example of discrete pricing, the firm can either increase its price by a single unit,

or keep the same price:

∆pjt =

1 if ∆τjt ≥ τ jt(X)

0 if ∆τjt < τ jt(X)
(1)

For a large enough tax increase, the firm will always increase its price, and for a small enough tax

increase the firm will keep its existing price. For each product there is a threshold level of the

tax increase, ∆τ jt, beyond which the price is increased. This would imply that the true function

ρjt(X,∆τ) = δτ jt(X)(∆τjt) where δz(·) is the Dirac delta function with point mass at z. Then for

each product we can compute its product specific pass-through rate as ρ̂j = 1
∆τjt

∫ ∆τjt
0 δτ(X)(∆τjt).

This pass-through rate takes on only two values for each j: 1
∆τjt

or 0. Ignoring other covariates,

the OLS estimates of the pass-through rate from (1) are a weighted average of product level pass-

through ρ̂ =
∑

jtwjtρ̂j .

This demonstrates how it is possible to generate either incomplete pass-through or over-shifting.

For example, if ∆τ = 0.25 and products are equally weighted, wj = 1
J , then ρ̂, our OLS estimate of

pass-through, would be a weighted average of ρj = 4 and ρj = 0. As long as more than 1
4 products

increase their price in response to the tax, it is possible to estimate ρ̂ ≥ 1 without imposing

special conditions on the demand function, while if fewer products increase their price we will find

incomplete pass-through (ρ̂ < 1).

Figure 5 illustrates the price response with a binary logit. Because the x-axis represents the tax

change, and the y-axis represents the price change, the OLS estimate of the pass-through rate is the

slope of a ray intersecting the sinusoidal curve, ρ̂ = ∆p
∆τ . The complete pass-through ρ = 1 line is in

yellow for reference. For a small tax increase (red line), it might be that very few products change

prices so that the estimated pass-through rate is small. For a very large tax increase (blue line) the

price of most products may increase, but this might be smaller (or larger) than the denominator,

∆τ . Some intermediate tax increase may be just large enough to be a tipping point where firms

adjust the prices of many products, leading to a large change in average prices relative to a modest

change in ∆τ and a high estimated pass-through rate. If we plot the slope of each ray to the same

S-shaped curve, we would find that the implied pass-through rate is U-shaped: rising during the

steep part of the S-curve and falling over the flat parts. If we expanded the support of potential

tax changes (and the potential outcomes of our price change model), price changes would follow a
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series of S-shaped curves, and pass-through would follow a series of U-shaped curves.

In general we do not expect the econometrician to observe ∆τ jt(X) directly, and instead it must

be estimated. If we allow for some econometric error in ∆τ jt(X) that is IID and type I extreme

value: then this suggests that the correct estimator for ρ̂jt(X,∆τ) is the predicted probability from

a logit (divided by the tax increase): Pr(∆p=1|X,∆τ)
∆τ . Our empirical specification extends this model

to an ordered logit and allow for larger price increases (or price decreases).

With enough variation in the support of ∆τ , the linear model from (1) can trace out any

relationship between tax changes and price changes ρjt(X,∆τ), including a nonlinear relationship

with discrete price changes such as an (ordered) logit. A stylized fact is that most price changes

are in whole-dollar increments. This motivates our choice to impose a discrete distribution on

price changes, and allows us to obtain more reasonable estimates for the relationship between price

changes and tax changes. This is helpful because the support ∆τ is limited. This is especially

important when we want to forecast for tax changes not observed in the data. If we estimate

a large pass-through rate for an observed tax increase, the linear model would apply that pass-

through rate to a larger increase; the nonlinear model might interpret a large pass-through rate

as the top of the U-shaped curve and anticipate less pass-through for larger tax changes. This is

crucial for measuring the welfare cost of these taxes, because declining pass-through rates mean not

only that taxes fall more on firms than on consumers, but also that they generate less deadweight

loss per dollar of government revenue.

5.4. Estimating Pass-Through with Price Points

To address whole-dollar price changes, we estimate ordered logit models of the form:

∆psjt = k if Y ∗sjt ∈ [αk, αk+1]

Y ∗sjt = f(∆τjt, θ1) + g(wjt, psjt, θ2) + h(psjt, p−s,jt, θ3) + βXsjt + γt + εsjt (2)

where we restrict ∆psjt ∈ {−$1.00, 0,+$1.00,+$2.00,+$3.00} and assign observed price changes

outside of this range to the nearest price point.32 The choice of covariates is informed both by

the firm dynamic optimization problem of Section 5.2 and the regression results of Section 4.2.

We allow the tax change to flexibly influence ∆psjt through f(·). Through g(·) we allow the

cumulative change in the wholesale price since the last change in the retail price, ∆wjt, to flexibly

enter equation (2), this is meant to measure pressure on the retailer to increase (decrease) prices.

Specifically, we include both a polynomial in the cumulative ∆wjt and an indicator for whole price

changes less than or equal to zero.33 We also proxy for competitive pressure with h(psjt, p−s,jt, θ3)

which includes indicators for being the highest or lowest priced seller of a product and a polynomial

32We provide extensive details on the assignment of prices changes to the discretized grid in Appendix D.2 as well
as robustness to different grids of price points.

33Once we control for g(·), additional controls for duration between price adjustments are not significant.
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in the difference between the firm’s price and the median competitor price for the same product.

The ordered logit models also include additional covariates like lagged prices (to capture price

changes of “cheap” vs. “high-end” products), annual sales of the product at that retailer (to capture

which products are important for overall profitability), total annual unit sales of the retailer (to

capture “large” vs. “small” retailers). We do not include product specific fixed effects, because we

worry about the incidental parameters problem in the nonlinear model.34 We interact all of the

covariates (except those in f(·)) with indicator variables for each state, and treat Connecticut as

our base case. This allows us to sidestep the unavailability of wholesale price data in Illinois and

Louisiana. We weight the sample by the quantity sold during the calendar year prior to each state’s

tax change, but normalize weights such that every state-size is given the same overall weight. We

also give equal weight to quarters with or without a tax change.35

We report key parameter estimates in Table 5; the full set of estimates can be found in Appendix

Table G7. Most of these terms have the anticipated sign: products which have experienced large

wholesale price changes since the prior retail adjustment are more likely to see price increases,

products priced high (low) relative to competitors are less (more) likely to see price increases, just

as in the linear regression in Appendix Table B2.

In Table 5, we report the parameter estimates for several different choices of orthogonal poly-

nomials f(∆τjt) (Cubic, Quartic, and Quintic). For purposes of comparison we also include a cubic

spline with a single knot point at ∆τjt = 1.36 When we estimate the model we hold out 20% of the

data and then use the withheld data to select the order of the polynomial. Out of sample likelihood

and BIC prefer the quartic polynomial model. This also agrees with the fact that 4th order term

is significant at 1%, while the 5th order term is not.37 We provide additional details regarding in

sample fit in Appendix Figure D1.

The predicted price change as a function of the tax change, (∆̂psjt|∆τjt, Xsjt), is the main

calculation of interest and is easier to interpret than the coefficients themselves. There are several

important considerations when making predictions. The first is to restrict ∆̂pjt to a discrete

prediction, as the ordered logit does.38 Second, we report responses in terms of statutory tax

changes ∆tt (ie: dollars per liter) rather than in ∆τjt (dollars per bottle). The relationship between

the two is straightforward: ∆τjt = ∆tt · zjt where zjt is the size of product j in liters. This avoids

a situation where products are taxed at two different rates.39 Third, because the ordered logit

34For this reason we also cannot include store fixed effects in our nonlinear model. Omitting product fixed effects
from the linear models in Section 4.2 tends to affect the R2 of the regression, but not pass-through estimates.

35This is a common technique in statistics and machine learning to deal with the fact that we are only interested
in predicting cases when ∆t > 0, and those cases represent a small fraction of our overall data.

36Varying the location of the knot point has no discernable effect on the estimates.
37This measure is only meaningful because we use orthogonal polynomials.
38We cannot expect to understand the implications of price points if ∆psjt is allowed to take on continuous values

such as 0.82.
39In theory a state could elect to charge a different tax rate on 1.75L bottles than 750mL bottles, though we are

unaware of any state that does so.
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model is nonlinear, this means that the effects of ∆τjt on ∆pjt will depend on other covariates.

All of our predictions are restricted to the period of the tax change in Connecticut. We predict

∆̂psjt separately for each store and product, and then take a weighted average where we weight the

sample by wjt, the annual sales for that product and store in the year prior to the tax increase.40

The average is taken over the distribution of the covariates xsjt.

Ex[∆̂pjst|∆t] =
∑
j

[∆̂pjst|∆τjt = zjt ·∆t, xjst] · wjst

Finally, because we are interested in the causal impact of excise taxes, we do not report the level

of the predicted price change, but the difference between the predicted change of a tax increase of

some positive ∆t = a and the predicted price change of no tax increase ∆t = 0:

g(a) = Ex[∆̂pt|∆t = a]− Ex[∆̂pt|∆t = 0]

We report the average predicted price changes g(a) and implied pass-through rates in Figure 6

using our preferred quartic polynomial in ∆τjt. While each predicted price change is a discrete

change to a price point, the mean predicted change and mean pass-through rate plotted in Figure 6

(as well as in Figure 7 and 8) average over thousands of products and thus appear to be continuous

functions of ∆τjt. We plot tax changes between zero and $1.07/Liter, which is the largest tax

change we observe in the data. Considering a larger tax increase requires extrapolating beyond the

data which we do not recommend.41 In all graphs vertical lines denote the observed tax increase

of $0.14/L in Louisiana, $0.237/L in Connecticut and $1.07/L in Illinois. The quartic, quintic and

spline specifications yield extremely similar average predictions while the cubic yields somewhat

oversmoothed but qualitatively similar predictions.

A state considering its next change in distilled spirits taxes might be interested to understand

how pass-through varies over larger and smaller tax increases for products of different sizes. In the

Appendix we plot implied pass-through rates by tax per bottle for each bottle size. Pass-through

rates are very similar for all three bottle sizes, which is unsurprising since model predictions are

nearly identical for ∆P as a function of ∆τ by size. The main source of discrepancy in predicted

price changes arises from differences in state variables such as relative prices and wholesale prices,

which are not tremendously different on average across package sizes. We focus on tax per liter

plots here because states set tax rates in per liter terms; no state has levied different volumetric

tax rates on products of different sizes.

40We use the same weighting for the linear regressions in Table 2. This coincides with the Laspeyres price index.
We also constructed the same figures using the Paasche index and obtain imperceptibly different results. This is
because the change in quantity weighting is small relative to the large and discrete nature of price changes. Other
weighting measures such as equal weighting across store products yields qualitatively similar results.

41Recall from Figure 4 the largest ∆τ = $1.87 is per bottle for 1.75L bottles in Illinois. We could in theory predict
larger tax changes than $1.07/L for 750mL bottles, but not for 1.75L bottles.
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The main takeaway from Figure 6 is that ∆̂psjt follows an S-shaped curve as a function of ∆τjt,

and the implied pass-through rate depends on the size of the tax. We find relatively low pass-

through ρ < 0.5 for taxes below $0.40/L and much higher pass-through ρ > 1.5 for tax increases

above $0.50/L.

As a robustness test, we expand the set of price points to include +$0.50 price increases;

predicted price changes are nearly indistinguishable from our main specification. We consider

further expanding the set of price points to include −$2.00 and +$4.00. As one might expect this

leads to somewhat lower pass-through for small tax changes and somewhat higher pass-through

for larger tax changes, but is still highly similar to our main specification. By including relatively

rare additional outcomes we reduce the bias of our predictions (from rounding), but at the expense

additional variance from mis-categorization. We report those results in Appendix D.2.

5.5. Measuring Incidence and Excess Burden

We focus on two key welfare measures: the incidence, which measures the extent to which the tax

burden is borne by consumers or firms; and the social cost of taxation, which measures how much

deadweight loss is generated per dollar of government revenue. Unlike the standard framework

where prices continuously respond to tax changes we show that with price points both incidence

and the social cost of taxation can be increasing or decreasing in the size of the tax. It is important

to note that the following welfare analysis assumes that prices are exclusively characterized by price

points and all price changes are made in whole-dollar increments. If some prices are changed in

other increments, then the welfare implications of excise taxes would be some mix of the following

and more traditional excess burden measures.

Let (P0, P1) and (Q0, Q1) denote the price and quantity before and after a tax increase of ∆τ

respectively, with ∆Q = Q1 − Q0 and ∆P = P1 − P0. We use the traditional linear approxima-

tions and constant marginal costs (MC) as illustrated in Figure 1, where supply is characterized

by (single-product) monopoly, to derive the following expressions. These expressions are approxi-

mations in the sense that the demand curve need not be linear. The incidence and social cost of

additional tax revenue are given by:

I(∆τ) =
∆CS(∆τ)

∆PS(∆τ)
≈

∆P ·Q1 + 1
2∆P ·∆Q

(∆P −∆τ) ·Q1 + (P0 −MC) ·∆Q
(3)

SC(∆τ) =
∆DWL(∆τ)

∆GR(∆τ)
≈

(P0 −MC) ·∆Q+ 1
2∆P ·∆Q

∆τ ·Q1
(4)

where ∆CS(∆τ) and ∆PS(∆τ) are the change in consumer and producer surplus, ∆GR(∆τ)

represents the change in government revenue, and ∆DWL(∆τ) is the change in deadweight loss

attributable to the tax change. To estimate the surplus losses to consumers and producers, the

deadweight loss and revenue raised by taxes, we draw on a combination of data, parameter estimates
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and assumptions. Our main input is the predicted price change at different tax levels ∆̂Psjt(∆τsjt)

which we obtain from our ordered logit model. We use the observed store-product-month level

price and quantity (P 0
fjt, Q

0
fjt) from the Nielsen data in the quarter prior to Connecticut’s July

2011 tax increase (2011Q2). In order to predict counterfactual quantities under different prices,

Q1(∆P (∆τ)), we need an estimate of the demand elasticity εD.

We assume an own-price elasticity of demand of εd = −3.5 which is consistent with the typical

product-level own price elasticity reported in Conlon and Rao (2015) and Miravete et al. (2018).

As a robustness test we consider εd ∈ {−2.5,−3.5,−4.5} which spans the range of own-elasticities

reported for individual products in the literature.42 Because all of these elasticities exceed unity

and we consider markets characterized by single product monopoly, producer surplus losses will

always outpace consumer surplus losses and the incidence will be less than unity.

Consistent with a constant elasticity framework we assume that
Pjt
MCjt

= µ and apply a common

markup to all products, using the implied marginal cost estimates in our welfare calculations. For

our main specification we assume µ = 1.5 or P−MC
P = 0.33 which is consistent with the combined

retailer-wholesaler markup observed in Connecticut. As a robustness test we also consider markups

of µ = 1.2, P−MC
P = 0.16 and µ = 2, P−MC

P = 0.5, which give qualitatively similar predictions

though larger (smaller) markups increase (decrease) ∆PS and ∆DWL.43

Because we consider joint retailer-wholesaler surplus our welfare calculations for producers apply

to all in-state firms. We do not include distillers or manufacturers in our surplus calculations in

part because they are largely multinationals and are out-of-state businesses. The more pressing

concern is that we have little to no information on the production function for distilled spirits.

To better understand the implications of price points for tax incidence and efficiency we estimate

∆PS,∆CS,∆GR,∆DWL as a function of ∆τ for each store-product, compute the expressions

from equations (3) and (4) and aggregate across products using weights as we did for Figure 6. We

also include vertical lines at the observed tax changes for each state in $/Liter. For purposes of

comparison, in Figure 7 we also report the same welfare measures computed under the least squares

estimates of pass-through for Connecticut ρ = (2.94, 2.094, 0.800) for 750mL, 1L, and 1.75L bottles

respectively.44

42Product-level own price elasticities tend to be larger in magnitude than category level elasticities for spirits,
which are often inelastic; including those reported in the meta-analysis by Wagenaar et al. (2009). There are a
large number of individual products and cross-price elasticities among competing brands are posisitive. We implicitly
assume the own-price elasticity captures the full impact of price changes on quantities without any cross-price effects.
The assumption of zero cross-price elasticities will matter only to the degree that the welfare gain from switching
products varies substantially with the size of the tax change. For robustness we compute ∆CS and ∆PS using the
structural demand model from Conlon and Rao (2015). In general we find lower incidence on consumers than in the
constant elasticity framework, but the way incidence (and efficiency) vary with respect to ∆τ remains qualitatively
similar.

43We are able to observe Connecticut wholesale prices for most products in our dataset, and the prices paid by
wholesalers to manufacturer/distillers for a subset of products. When we estimate markups in our other paper (Conlon
and Rao, 2015), we obtain similar quantities though we typically estimate smaller markups on low-end products and
larger markups on high-end products rather than a single markup.

44These results come from quarterly regressions which we report in Table D4. They are highly similar to the
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Accounting for the discreteness of the price points has some important economic implications.

In the linear (constant pass-through) model the social cost of tax revenue ∆DWL
∆GR is a linearly

increasing function of the tax. Once we incorporate price points, it is an increasing series of U-

shaped curves. For a small tax change, there are very few predicted price changes as firms absorb

the cost with the exception of a few products right on the boundary of price adjustment. After

the products right on the boundary adjust, the social cost of tax revenue actually declines as firms

continue to absorb the tax increases. Around $0.50/L, which represents an $0.88 tax increase for

1.75L bottles, we see a spike in price increases in Figure 6 and in the social cost of tax revenue in

Figure 7. Increasing the tax by $0.52/L generates roughly 10 times the deadweight loss per dollar

of tax revenue raised than a tax of $0.375/L. After a wave of mostly 1.75L bottles adjust prices,

the social cost of tax revenue declines from $0.55 to $0.80, until it increases again around $1.00/L

or around $0.75 per 750mL bottle.

In comparison, the linear model tends to over predict the social cost of small tax increases

and under-predict the social cost of large tax increases. We see a similar pattern for the relative

incidence I = ∆CS
∆PS in Figure 7. Here the linear model (weakly) over-predicts the relative share of

taxes borne by consumers. This is particularly true for small tax increases which are borne mostly

by firms. For larger tax increases, the two measures roughly coincide with I ≈ 0.8. Just like in the

social cost of taxation calculations, we observe one of a series of U-shaped curves in the incidence

calculation.

In Figure 8, we show how our welfare results respond to different assumptions regarding elastic-

ities. We see that the incidence of small tax changes is relatively insensitive to the elasticity, but for

larger tax changes we generally find that as demand becomes more elastic, consumers bear a smaller

fraction of the burden (I ≈ 0.5 for a large tax increase at ε = −4.5 and I ≈ 1.5 for ε = −2.5). This

is consistent with our usual intuition that as the demand side becomes more elastic they bear less

of the tax. However, the predicted incidence is still non-monotonic, though for large tax changes

the curve flattens as demand becomes more elastic.

Figure 8 also shows how the social cost of taxation responds to the elasticity. Again, consistent

with our usual intuition more elastic demand leads to a larger quantity response and more dead-

weight loss per dollar of tax revenue. Here we have preserved the U-shaped curve as in Figure 7

but merely stretched (or compressed) them over the y-axis. This shows that the main qualitative

finding (that the social cost of taxation is not a linearly increasing function of the tax but rather

a non-monotone relation) is insensitive to the choice of the elasticity.

We also report comparisons between our ordered logit price points predictions and the OLS

estimates for individual elasticties (similar to Figure 7) in Appendix D.2 in Figures E2 and E3.

Qualitatively the findings are similar, the linear model over-predicts the social cost of small tax

changes and under-predicts the social cost of large ones. The linear model also over-predicts the

3-month results reported in Table 2. We use the same formulas from equations (3) and (4) rather than I = ρ or
I = 1

ρ
formulas which explicitly rely on smooth changes.
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consumer burden of large tax increases and gives broadly similar predictions for larger tax increases.

5.6. Discussion of Results

With price points there are intervals where the ratio of excess burden per dollar of tax revenue

actually declines —revenue increases outpace surplus losses. Specifically, following a threshold

where many prices are adjusted, even as taxes rise, fewer prices are increased leading to small

average quantity responses but additional revenues. This suggests a close relationship between

the incidence of taxes and the efficiency of taxes when both vary with the size of the tax change.

In short, taxes that do not trigger price increases: (1) are paid by firms, (2) cannot generate

deadweight loss because without price changes quantity remains unchanged.

The fact that the efficiency cost of tax revenues declines over some ranges suggests that states

deciding on tax changes would do better on the efficiency front if they consider how prices are

changed when they set tax increases. Larger tax increases in some cases may actually entail a

lower cost of public funds on average. While finding the local minimum of a curve like that in

Figure 7 may be difficult, avoiding the local maximum may be somewhat easier, and the potential

savings (roughly 30% of the social cost of tax revenue) are large. The challenge for policymakers is

estimating how far from the boundary τ jt(X) each product is. We think this exercise is easier than

it looks, at least for a single bottle size. In our case, the tax increase to avoid is the 50-60 cent per

liter tax, which translates to an increase of $0.80-$1.05 for the most popular 1.75L bottle size. We

don’t think it is coincidental that the social cost of taxation is highest when the tax change and

the price increment are similar.

We see that policymakers in Connecticut and Louisiana pursued very different strategies for tax

efficiency, but both were successful in avoiding the local maximum. In Connecticut, policymakers

implemented a relatively small tax of $0.24 per liter that triggered a relatively small number

of $1.00 price increases. Likewise in Louisiana, they implemented an even smaller tax increase of

$0.14 per liter, which triggered a very small number of $1.00 price changes. In Illinois, policymakers

implemented a very large tax of $1.07 per liter that triggered a large number of $1.00 and $2.00

price increases, leading to a high pass-through rate, relatively more consumer incidence and a less

efficient tax. A tax increase of $0.75 would have been a more efficient tax and borne to a greater

degree by producers. Where the exercise becomes more complicated is that tax increases that are

good for one package size may be bad for others; but by focusing attention on the most popular

bottle sizes, it may be possible to mitigate this problem.

6. Conclusions

We empirically document an important rigidity in the pricing of distilled spirits that affects how

taxes pass-though to prices. We demonstrate that retailers set the vast majority of prices of spirits

products at only a handful of price points in terms of the cents portion of the price. In the three
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states we study, at least 89% of prices have one of three endings. Price points and their associated

rigidities mean that firms withstand cost shocks, including tax increases, until they are sufficiently

far from their optimal price that moving to the next price point leaves them better off, resulting in

infrequent but large prices changes in set increments.

We show that theoretically these pricing rigidities can rationalize both incomplete or excessive

pass-through without placing restrictions on the demand curve. As a result of these rigidities, using

parameter estimates from a linear regression of change in price on change in tax can be misleading

when evaluating alternative tax policies. Linear regression of price changes on tax changes presumes

that price adjustment can happen in a smooth and continuous manner. An ordered logit model

can instead account for the discreteness of price changes and be used to recover the pass-through

rate, incidence, and efficiency of alternative tax policies. We demonstrate that with price points

and the resulting pattern of price changes pass-through, incidence, and tax efficiency are non-linear

and non-monotonic functions of the tax and that nominal rigidities like price points or menu costs

have potentially important implications for excise tax policy.

We document that price increases in response to tax changes can be concentrated around certain

levels of tax increases. Further increases beyond these levels may not generate many further price

increases, but instead come out of firm profits, leading to minimal changes in quantity. As such the

incidence and social cost of government revenue are tightly linked. Taxes are most efficient when

the consumer incidence is minimized, and sometimes larger taxes can produce a lower average cost

of public funds. This strongly contrasts with the conventional wisdom that tax efficiency is linearly

decreasing in the amount of tax revenue raised.

Our estimates center on 3-month pass-through rates, raising the question of how relevant our

conclusions are over different time horizons. Large price changes following a tax increase may

forestall future price increases, meaning that high pass-through rates may dissipate over time.

Our perspective is that the short-run may not be such a short period of time. First, we observe

qualitatively similar results when we repeat our exercise over 6-month and 1-year horizons. Second,

as indicated in Figure 3, in 2014 (well after the Connecticut tax increase) retail prices increase less

than once per year on average, and often with a predictable seasonal pattern. It is not unreasonable

to think that a well timed tax increase could have a relevant horizon of 2-3 years. When paired

with the potential to reduce the social cost of excise taxation by up to 30%, this seems relevant.

Our simulations raise the possibility of better policy design. By considering pricing patterns and

the optimization frictions they create explicitly, policymakers can improve the efficiency of excise

tax increases. For example, in recent years several U.S. cities have enacted new taxes on sugar

sweetened beverages ranging from $0.01 to $0.02 per ounce, or $0.68 to $1.35 per two-liter bottle

and $1.44 to $2.88 per 12-pack. Our results suggest that policymakers interested in minimizing

the efficiency cost of these taxes should prefer tax increases that are either considerably smaller or

larger than typical price change increments of the most commonly sold package size.
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Table 1: Changes in Distilled Spirits Taxes in License States, 2007-2016

State Old Tax New Tax Effective Date Notes

Connecticut $4.50/gal + 6% sales tax $5.40/gal + 6.35% sales tax July 1, 2011
Illinois $4.50/gal + 6.25% sales tax $8.55/gal + 6.25% sales tax Sept 1, 2009 plus Cook County and Chicago excise taxes
Louisiana $2.50/gal + 4% sales tax $3.03/gal + 5% sales tax April 1, 2016 legislated to end 07/2018; made permanent
Kentucky $1.92/gal $1.92/gal + 6% sales tax April 1, 2009 sales tax newly applied to off-premise sales
Maryland $1.50/gal + 6% sales tax $1.50/gal + 9% sales tax July 1, 2011 sales tax increase on alcohol only
Massachusetts $4.05/gal $4.05/gal + 6.25% sales tax Sept 1, 2009 ended Jan 1, 2011
New Jersey $4.40/gal + 7% sales tax $5.50/gal + 7% sales tax Aug 1, 2009
Rhode Island $3.75/gal + 7% sales tax $5.40/gal + 0% sales tax Dec 1, 2013

Note:
The table above describes the nature and timing of the tax changes for each of the eight states that altered their alcohol-
specific taxes since 2007. In addition to these changes in alcohol taxes, 5 license states increased their general sales taxes
which also apply to alcohol: California in 04/2009 (1 percentage point), Washington DC in 07/2011 (1 p.p), Indiana in
04/2008 (1 p.p.), Maryland in 01/2008 (1 p.p.), and Minnesota in 07/2009 (0.375 p.p.). Further, in 2012 Washington
state privatized both the distribution and retailing of spirits and now even allows producers to sell directly to retailers.
Concomitant with the privatization, Washington also raised taxes on spirits.
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Table 2: Pass-Through: Taxes to Retail Prices

Dependent Variable: All Observations ∆ Retail Price 6= 0
Price Change 1 month 3 month 6 month 1 month 3 month 6 month

Connecticut July 1, 2011 Tax Increase of $0.24/L

Tax Change (750mL) 2.740∗ 2.816∗ 2.283∗ 5.824∗ 4.508∗ 3.393∗

(0.662) (0.509) (0.586) (1.500) (0.976) (1.147)
Tax Change (1000mL) 1.659∗ 1.841∗ 1.741∗ 3.291∗ 2.231∗ 2.007

(0.366) (0.434) (0.406) (1.170) (0.852) (0.854)
Tax Change (1750mL) 0.986∗ 0.802∗ 0.483∗ 1.997∗ 1.212 0.705

(0.291) (0.232) (0.259) (0.717) (0.484) (0.549)

Illinois Sept 1, 2009 Tax Increase of $1.07/L

Tax Change (750mL) 0.655∗ 1.547∗ 2.007∗ 0.979∗ 1.982∗ 2.357∗

(0.125) (0.114) (0.094) (0.204) (0.156) (0.104)
Tax Change (1750mL) 0.401∗ 0.822∗ 0.858∗ 1.108∗ 1.150∗ 1.016∗

(0.053) (0.075) (0.114) (0.129) (0.099) (0.129)

Lousiana Sept 1, 2009 Tax Increase of $0.14/L

Tax Change (750mL) 1.230 3.776∗ 1.685∗ 2.146 6.331∗ 0.612
(0.942) (0.961) (0.916) (1.827) (1.497) (1.213)

Tax Change (1750mL) 0.321 2.253∗ 0.683∗ 0.454 3.581∗ 0.142
(0.508) (0.476) (0.400) (0.915) (0.692) (0.530)

Observations 7,049,524 6,859,112 6,678,483 2,821,502 3,759,221 4,239,584
Adjusted R2 0.021 0.040 0.042 0.050 0.075 0.070

Note: The table above reports OLS estimates of the pass-through of taxes into spirits prices in each state over different
horizons by product size. Each state and horizon is a separate regression. The reported coefficients can be interpreted
as the pass through in dollars for a one-dollar increase in tax. The left panel includes all observations while the panel on
the right conditions on a non-zero change in the retail price. Products are sold in three main sizes: 750mL, 1000mL and
1750mL with state taxes varying by product volume regardless of alcohol concentration. Only 750ml and 1750mL products
are included in Illinois and Louisiana because relatively few 1000mL bottles are sold in these states. The dependent variable
is the change in price for a given product at a given store over a one month, three month or six month horizons. Each
regression includes fixed effects for UPC, month of year, and year (all interacted with state). All regressions are weighted by
annual sales for the UPC and store during the calendar year prior to each state’s tax change. Standard errors are clustered
at the state-UPC level. We provide quarterly results in Appendix Table D4.
∗ Significant at the 1 percent level.
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Table 3: Quarterly Retail Price Transitions by State, Cents Only

Connecticut

from/to 0.49 0.59 0.65 0.69 0.79 0.89 0.93 0.95 0.98 0.99 other

0.49 2.26 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.73 0.03
0.59 0.04 0.98 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.29 0.02
0.65 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01
0.69 0.02 0.01 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.06 0.01
0.79 0.01 0.02 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.06 0.01
0.89 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.02 0.00
0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.01 0.00 0.30 0.03
0.95 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.20 0.02
0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.20 0.01
0.99 0.72 0.32 0.02 0.07 0.08 0.17 0.07 0.17 0.13 88.55 0.72
other 0.03 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.82 0.49
total 3.08 1.38 0.10 0.26 0.21 0.60 0.71 0.27 0.77 91.26 1.35
long-run 3.04 1.42 0.08 0.22 0.19 3.96 0.26 0.25 0.54 88.82 1.22

Illinois

from/to 0.19 0.29 0.39 0.49 0.59 0.79 0.89 0.97 0.98 0.99 other

0.19 0.06 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.25 0.04
0.29 0.00 0.15 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.18 0.03
0.39 0.00 0.00 0.07 0.02 0.00 0.01 0.00 0.00 0.00 0.30 0.04
0.49 0.02 0.04 0.03 2.03 0.02 0.06 0.02 0.03 0.01 2.14 0.38
0.59 0.01 0.00 0.00 0.03 0.11 0.01 0.00 0.00 0.00 0.28 0.04
0.79 0.01 0.01 0.01 0.05 0.01 0.23 0.01 0.00 0.00 0.65 0.07
0.89 0.00 0.00 0.00 0.02 0.00 0.01 0.07 0.00 0.00 0.22 0.03
0.97 0.00 0.00 0.00 0.01 0.00 0.01 0.00 3.24 0.00 1.29 0.09
0.98 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 1.07 0.07 0.15
0.99 0.19 0.16 0.27 2.14 0.24 0.61 0.20 1.43 0.12 71.43 3.09
other 0.04 0.04 0.04 0.40 0.05 0.06 0.03 0.13 0.14 3.38 1.97
total 0.33 0.40 0.42 4.76 0.43 1.02 0.33 4.84 1.34 80.19 5.93
long-run 0.31 0.39 0.41 4.68 0.41 1.00 0.32 5.28 1.41 80.02 5.77

Louisiana

from/to 0.19 0.29 0.39 0.49 0.59 0.69 0.79 0.89 0.95 0.99 other

0.19 0.48 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.10 0.03
0.29 0.01 0.76 0.02 0.04 0.01 0.01 0.02 0.01 0.00 0.13 0.02
0.39 0.01 0.02 0.61 0.04 0.01 0.02 0.02 0.01 0.00 0.16 0.03
0.49 0.03 0.05 0.05 5.75 0.06 0.06 0.05 0.08 0.01 2.98 0.23
0.59 0.01 0.01 0.01 0.04 0.67 0.02 0.02 0.01 0.00 0.12 0.02
0.69 0.01 0.01 0.02 0.07 0.02 0.80 0.03 0.01 0.00 0.12 0.02
0.79 0.01 0.01 0.02 0.07 0.01 0.02 0.68 0.02 0.00 0.13 0.02
0.89 0.01 0.01 0.02 0.07 0.01 0.02 0.02 0.74 0.00 0.10 0.03
0.95 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 1.19 0.46 0.37
0.99 0.15 0.22 0.23 3.02 0.20 0.21 0.21 0.20 0.70 71.53 1.40
other 0.02 0.03 0.02 0.28 0.02 0.02 0.02 0.03 0.12 1.81 1.41
total 0.74 1.13 1.01 9.43 1.02 1.20 1.08 1.12 2.02 77.64 3.58
long-run 0.89 1.48 1.26 9.61 1.33 1.56 1.41 1.42 1.90 75.69 3.46

Note: The table above describes quarterly price transitions for each state where prices move from prices listed by row to
prices listed by column. Each entry reports the unweighted share of all prices accounted for by each transition. For example,
2.26% of all prices in Connecticut now end $0.49 and also ended in $0.49 last quarter while 0.72% of all Connecticut prices
now end in $0.49 but ended in $0.99 last quarter. The ‘other’ row cumulates all unlisted price endings, meaning that 0.03%
of all current Connecticut prices now end in $0.49 but had an unlisted price ending like $0.96 in the prior quarter. The
‘total’ row reports the share of prices at each price point. The ‘long-run’ row at the bottom of each state panel reports the
long-run stationary distribution of prices π implied by each state’s transition matrix π = πP . The most frequent transition
pattern in each state is bolded along with the corresponding total share.
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Table 4: Quarterly Retail Price Increments

All Weeks Month of Tax Change
CT IL LA CT IL LA

Whole Dollar 71.08 61.57 64.75 75.96 67.15 63.72
Half Dollar 6.59 8.61 13.25 6.20 8.83 12.12
Small Change 2.72 4.91 3.11 1.12 1.60 2.04
Large Change 4.11 1.71 1.97 2.38 1.46 1.87
Other 15.50 23.19 16.92 14.33 20.96 20.25

Zeros 78.28 46.25 53.56 58.67 14.67 38.88

Note: The table above reports the unweighted share of quarterly price changes that are in whole dollar, half dollar and
other increments. Price changes larger than $8 or smaller than $0.25 in magnitude are labelled Very Large and Very Small,
respectively. No Change reports the share of prices that are unchanged.
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Table 5: Ordered Logit Estimates ∆p ∈ {−1, 0,+1,+2,+3}
Cubic Quartic Quintic Spline(1)

Tax Change 498.114∗ 523.324∗ 523.353∗ 1.841∗

(28.189) (28.034) (27.995) (0.535)
Tax Change2 -104.691∗ -130.026∗ -129.352∗ -6.094

(27.446) (28.134) (28.172) (3.227)
Tax Change3 -46.388∗ -28.202 -33.103 29.941∗

(16.433) (17.116) (18.926) (8.990)
Tax Change4 -39.447∗ -32.614 3.220∗

(13.420) (17.393) (0.238)
Tax Change5 -7.496

(14.520)
Wholesale price change <= 0 −0.444∗ −0.435∗ −0.437∗ −0.434∗

(0.162) (0.163) (0.163) (0.162)
Wholesale Price Change 96.227∗ 96.032∗ 96.172∗ 96.570∗

(18.534) (17.940) (17.899) (17.904)
Wholesale Price Change2 −55.762∗ −44.598 −43.672 −44.772

(20.628) (20.013) (20.176) (20.019)
Wholesale Price Change3 −29.598 −22.685 −22.226 −23.457

(18.614) (18.300) (18.533) (18.348)
Total Product Sales −0.022 0.042 0.045 0.043

(0.061) (0.056) (0.055) (0.056)
Total Store Sales 0.214∗ 0.232∗ 0.233∗ 0.230∗

(0.041) (0.040) (0.039) (0.040)
log Lag Price −0.185 −0.145 −0.141 −0.144

(0.106) (0.114) (0.116) (0.115)
High Price −0.224 −0.242 −0.249 −0.277

(0.103) (0.108) (0.109) (0.108)
Low Price 0.426∗ 0.406∗ 0.404∗ 0.454∗

(0.124) (0.129) (0.128) (0.129)
Relative Price −268.986∗ −186.646∗ −169.923∗ −306.066∗

(7.735) (7.843) (7.903) (8.010)
Relative Price2 216.632∗ 322.345∗ 339.913∗ 46.209

(30.202) (30.587) (30.451) (30.859)
Relative Price3 251.597∗ 488.293∗ 503.261∗ 107.108∗

(4.622) (4.802) (5.056) (4.628)

Observations 2,371,792 2,371,792 2,371,792 2,371,792
State-UPCs 3,567 3,567 3,567 3,567
Out of Sample Likelihood 1,025,925 1,025,797 1,025,900 1,024,963
BIC 2,052,727 2,052,498 2,052,731 2,050,829

Note: The table above reports estimates from ordered logistic regressions of quarterly price changes on quarterly tax changes
with different parameterizations of the tax change and a number of controls. The first column employs a cubic orthogonal
polynomial of the tax change while columns 2 and 3 use quartic and quintic orthogonal polynomials of the tax change,
respectively. The final column uses a spline with a knot point at tax change = 1 and its coefficients are not polynomial
order. The controls measure the change in wholesale price since the last change in retail price, total sales by product over
all stores, total sales by store over all products, the natural log of the price for the product the prior quarter at the same
store, whether that store sold the product at the highest or lowest price the prior quarter and the difference between the
price last quarter and the median price across all stores last quarter. All regressions also include state-varying controls;
specifically, they include state fixed effects and interactions between state dummies and Total Product Sales, Total Store
Sales, log Lag Price, High Price, Low Price and the Relative Price cubic polynomial. All four regressions are weighted by
product-store sales in the year prior to the tax change. Weights are balanced by state, bottle size and tax change indicator.
∗ Significant at the 1 percent level. All standard errors are clustered at state-UPC level.
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Figure 1: Change in Surplus When Price is Changed
Note: The figure above illustrates the lost surplus due to over-pass through of a tax with a monopolistic supplier. If the tax

was pass-through at the lower long-run rate then price and quantity would shift from P0 and Q0 to P ∗ and Q∗ and the lighter

shaded regions would represent the lost surpluses to consumers and producers. With over-pass-through price and quantity are

instead P1 and Q1, leading to larger surplus losses.
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Figure 2: Average Price Change (by Month).
Note: The figure above plots the unweighted mean change in price by month for all years and for the year of the tax change.

Vertical lines denote month of tax change. Price is in dollars per bottle.
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Figure 3: Frequency of Retail Price Adjustments
Note: The figure above plots the share of retail prices that change and that increase in each state for each month between

2007 and 2016, weighted by annual sales for the UPC and store in the calendar year prior to each state’s tax change, balanced

on package size.
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Figure 4: Pass-Through Estimates
Note: The first figure above plots the estimated pass-through rates for different size tax increases. The second figure plots the

pass-through estimates conditional on a price change. All regressions are weighted by annual sales for the UPC and store

during the calendar year prior to each state’s tax change, normalized by size and state. The dashed lines estimate the

pass-through rates as linear functions of the tax. For the unconditional left panel the parameters of the best fit line are:

ρ(∆τ) = 1.76− 0.51 ∗∆τ while for the conditional right panel the best fit line is ρ(∆τ) = 2.47− 0.72 ∗∆τ . The dotted lines

indicate the implied pass through of a $1.00 and $2.00 price change respectively.
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Figure 5: Probability of $1 Tax increase at different tax sizes (illustrative)
Note: The figure above plots the hypothetical price response to a tax increase as a sinusoidal curve. The slopes of the

intersecting rays represent hypothetical linear estimates of the pass-through rate of various tax changes. While the true

relationship between tax increases and prices is traced out by the curve, different observed tax changes can generate very

different linear pass-through estimates.
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Figure 6: Specification Comparison for Ordered Logit
Top Pane: Predicted Price Change; Bottom Pane: Implied Pass Through Rate.

Vertical Lines at Observed Tax Changes.
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Figure 7: Welfare Predictions: Ordered Logit vs. OLS (Own Elasticity ε = −3.5)
Top Pane: Effieciency: DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Vertical Lines at Observed Tax Changes.
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Figure 8: Welfare Predictions: Alternate Elasticities
Vertical Lines at Observed Tax Changes

38



Online Appendices

A. Summary Statistics

We summarize our main (monthly) dataset in Table A1. For each state and product size (750mL,
1L, 1.75L) we report the number of store-product-month observations, the total sales, and the
average price paid (total revenue divided by total sales). We exclude 1L bottles from Illinois and
Louisiana because we have fewer than 8,000 such observations and they represent a very small
fraction of sales; we keep them for Connecticut where they represent around 8% of the market.
Additionally, we report the size of the tax increase for each state and product size which ranges
from $0.105 per bottle for 750mL bottles in Louisiana to $1.87 per bottle for 1.75L bottles in
Illinois. We also consider a weighted version of the same sample where we weight products by their
annual sales in the same store for the calendar year prior to tax change. We use these weights
because price changes are more important for more popular products.45 The weighted sample
has substantially lower prices because mass-market products are cheaper and more popular than
high-end niche products.

Table A1: Summary Statistics by State and Size

Unweighted Sample Weighted Sample
State Size(mL) ∆τ # Obs Total Sales Price # Obs Total Sales Price

CT 750 0.178 416,587 2,161,852 25.64 275,585 1,553,462 22.88
IL 750 0.802 6,547,716 48,319,333 18.53 3,459,396 31,229,034 16.05
LA 750 0.105 2,234,366 12,371,082 19.04 1,711,654 10,454,975 17.56

CT 1000 0.238 54,803 433,746 22.35 44,587 359,712 21.60

CT 1750 0.416 244,975 2,849,310 27.70 186,673 2,417,044 24.95
IL 1750 1.872 2,166,896 29,223,908 23.49 1,539,886 24,929,312 20.11
LA 1750 0.245 1,083,667 8,833,187 24.35 882,465 7,756,701 22.29

Note: Observations are store-month-UPC. Weights correspond to annual sales for the UPC and store during the calendar
year prior to each state’s tax change.

We observe that prices are broadly similar in Louisiana and Illinois, but substantially higher in
Connecticut.46

B. Additional Heterogeneity in Pass-Through Rates

The pass-through rates detailed in Table 2 average over all products in each state of the specified
size. These averages belie some sources of meaningful heterogeneity in pass-through rates.

Table B2 details the substantial heterogeneity across stores in their response to the tax. Stores
that sell products at relatively lower prices (in the prior month) are more likely to raise prices in
response to the tax change than those stores with relatively higher prices. We use two different
discrete measures of high and low-price stores by product and month: the first column uses dummies
for prices above or below the median price, the second column uses dummies for the highest and
lowest price retailer (allowing for ties) selling the same product. For both measures we find that at
low-price stores the tax is passed on at a rate of roughly 260% to 270% while at high-price stores

45In total we observe 6,785 products many of which have extremely low sales. We consider restricting the sample
to the top 1000 or top 500 products and it has almost no effect on any of the estimates we report.

46We examine the laws which facilitate collusive wholesale pricing in Conlon and Rao (2015).
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pass-through point estimates are below 10% and statistically indistinguishable from zero. We also
employ a continuous measure of relative price in the third column and again find lower relative
prices are correlated with larger pass-through rates.

Table B2: Pass-Through - Taxes to Retail Prices Relative to Other Stores

Above/Below Median Min/Max Continuous

∆ Tax 1.045∗ 1.132∗ 1.128∗

(0.270) (0.237) (0.221)
∆ Tax * High −0.923∗ −1.141∗

(0.352) (0.366)
∆ Tax * Low 1.548∗ 1.584∗

(0.411) (0.489)
∆ Tax * Relative −0.177∗

(0.031)
High Price −0.381∗ −0.350∗

(0.050) (0.042)
Low Price 0.152∗ 0.246∗

(0.029) (0.031)
Relative to Median −0.034∗

(0.003)

Observations 427,957 427,957 427,957
Adjusted R2 0.028 0.025 0.031
Product FE Yes Yes Yes
Month+Year FE Yes Yes Yes
High Measure Above Median Maximum Continuous
Low Measure Below Median Minimum % Deviation

∗ Significant at the 1 percent level

Note: The table above reports OLS estimates of the pass-through of taxes into retail prices in Connecticut for
low and high-priced stores. All regressions weighted by 2011 Nielsen units (normalized by size) and reported
standard errors are clustered at the UPC level. Relative prices are from the prior month. Columns (1)+(2) use
indicator variables. Column (3) uses percentage deviation from median price.

Table B3 examines how retail price changes are modulated by the cumulative change in the
lowest wholesale price of a product since a store’s last retail price change. This state variable
captures the pressure to adjust prices that a retailer faces from the build-up of wholesale price
changes. In column 1 of Table B3 we include the wholesale state variable alongside the size-
interacted tax change variable; in column 2 we include an interaction between the wholesale state
variable and the change in tax and in column 3 we include both the main and interaction terms.
In all specifications larger cumulative changes in wholesale prices since the last retail price change
lead to larger retail price increases. While the main effect and interaction term are statistically
significant on their own (columns 1 and 2) when both are included only the main effect of the
wholesale state variable is significant though the point estimate of the interaction term is of the
expected positive sign.
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Table B3: Pass-Through - Adding Wholesale Price Change State Variable (CT only)

(1) (2) (3)

∆ Tax (750mL) 2.949∗ 3.028∗ 2.887∗

(0.815) (0.818) (0.820)
∆ Tax (1000mL) 2.024∗ 2.014∗ 1.953∗

(0.575) (0.581) (0.581)
∆ Tax (1750mL) 0.672∗ 0.510 0.592

(0.391) (0.404) (0.402)
∆W 0.107∗ 0.106∗

(0.018) (0.019)
∆W ×∆T 0.394∗ 0.092

(0.105) (0.109)

Observations 92,553 92,553 92,553
Adjusted R2 0.040 0.022 0.040

∗ Significant at the 1 percent level.
Note: The table above reports quarterly OLS estimates of the pass-through of taxes into retail prices in
Connecticut controlling for the change in the product’s wholesale price since the last change in the store’s retail
price for that product. All regressions weighted by 2010 Nielsen units (normalized by size) and reported standard
errors are clustered at the UPC level.

C. Data

C.1. Aggregation of Nielsen Weekly Data to Monthly Data

The Nielsen scanner data are recorded weekly, and some weeks span two months. We aggregate
the data to the monthly level for the initial analysis for a number of reasons. The first is that
in Connecticut, wholesale (and retail) prices are not allowed to vary within a month. This is
not necessarily true in Illinois or Louisiana where prices can adjust more flexibly. Second, when
tax changes are observed, the occur on the first day of the month. We allocate weeks to months
based on the calendar month of the last day of the corresponding week. When we aggregate, we
take the last price (Nielsen revenue divided by units) recorded in each month and total sales for
each product-store-month. In practice, there is only a single price for 99% of store-month-product
observations in Connecticut once we exclude the first week of the month (which may contain data
from two months).

C.2. Consolidation

We consolidate products so that a product is defined as brand-flavor-size such as Smirnoff Orange
Vodka 750mL. Sometimes a “product” may aggregate over several UPC’s, as changes in packaging
can result in a new UPC. UPC changes most commonly arise with special promotional packaging
such as a commemorative bottle, or a holiday gift set. At other times, the change in UPC may
be purely temporal in nature. A product may also be available in both glass and plastic bottles
at the same time. We rarely observe price differences for glass and plastic packaging within a
product-month, so we also consolidate these UPCs.

In total, these consolidations help us to construct a more balanced panel of products over time,
and avoid gaps during holiday periods, or products going missing when packaging changes. This
is especially important when our goal is to capture changes in prices within a product-store over
time.
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C.3. Cleaning Prices

Nielsen data report weekly sales at the store-UPC level. Prices are not observed directly but rather
imputed from revenues as pt ≈ pt·qt

qt
. It is common to adjust or filter prices under a number of

scenarios: (1) transitional prices (2) temporary sales (3) clearance/closeouts. For (1) observed
prices may not represent transaction prices, but rather the weighted average of two different price
points. For (2) and (3) the observed prices may in fact be transaction prices, but those prices
may not end in 0.99 as many stores/chains use unusual price endings internally to track sales or
clearances.

It is helpful to consider a sequence of prices for a product [pt−2, pt−1, pt, pt+1, pt+1] and so on.
In many cases pt and pt+1 are not adjacent weeks but rather adjacent periods in which a sale is
recorded. This is is important because Nielsen does not record any information unless a product
was purchased that week.

Rule #1: Transitional Prices

If the store changes its prices at the end of a Nielsen-week (Saturday to Saturday) the the recorded
price should match the actual transaction price. A more likely scenario is that a store changes
its price midweek so that revenues include sales recorded at pt−1 and pt+1, while no transactions
actually take place at the recorded pt. Because we are interested in price changes we will replace
pt with the closer of pt−1, pt+1, so that our recorded price corresponds to an actual transacted price
(rather than a weighted average).

We can detect these transitional prices by when pt ∈ (pt−1, pt+1, ) or pt ∈ (pt+1, pt−1, ) and then
we use observed sales qt to construct a convex set of potential prices where w = [1, . . . , qt − 1]/qt
and pt ≈ wpt−1 + (1− w)pt+1 to see if pt lies on the grid of transitional prices.

We apply this rule only to price endings not in the four most commonly used price endings for
each chain in our dataset.

We include the code below:

def transition_prices(p1,p2,pobs,q):

# is observed price between (p1,p2)

if not (((pobs < p1) & (pobs > p2)) | ((pobs > p1) & (pobs < p2))):

return np.nan

#convex weights

w=np.array([x/q for x in range(0,q+1)])

# grid of possible prices

possible=w*p1 + (1-w)*p2

# check if observed price is within 1 cent of rounded grid of possible prices

# then return the closer price --> otherwise missing

if any(np.isclose(pobs,np.round(possible,3),atol=.01)):

if np.abs(p1-pobs) <= np.abs(p2-pobs):

return p1

else:

return p2

else:

return np.nan

Rule #2: Temporary Sales

There is evidence that many stores (or chains) use prices with unusual endings as an internal way
to track temporary sales or promotional prices. For example, reference prices may end in 0.99 or
0.49 but temporary sales may end in 0.97 or 0.12. This is largely not an issue in Connecticut where
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regulations make temporary sales relatively rare, but appears to be more common in Illinois and
Louisiana where retailers are free to increase and reduce prices at will.

We consider a price a one-week temporary sale if: pt−1 = pt+1 = pt+2 = pt−2 and pt < pt−1.
For a two week temporary sale, we define the first week as: pt−3 = pt−2 = pt−1 = pt+2 = pt+3

and pt < pt−1. For both cases we require that the final observed price for a product cannot be
considered a “sale” price.

def add_temp_sales(df):

# observed leads and lags are all identical except p_t, p_{t+1} and p_t < p_{t-1}

x=(df[['p_lag1','p_lag2','p_lag3','p_lead2','p_lead3','p_lead4']].std(axis=1)==0) & ...

(df['price']< df['p_lag1']) & ~(df['p_lead2'].isnull())

# p_t == p_{t+1}

x=x & (df['price'] == df['p_lead1'])

# Detect the (optional) second week of sale

y=(df['p_lag1'] == df['price']) & x.shift(1)

# Detect one week sales

z=(df[['p_lag1','p_lead1','p_lag2','p_lead2']].std(axis=1)==0) ....

&(df.price<df.p_lag1)&(~df.p_lead1.isnull())

df['sales_2wk']=(x|y)

df['sales_1wk']=z

return df

Rule #3: Closeouts/Clearance Items

We also find and tag clearance or closeout prices. These are the final price at which a good transacts
pT subject to some conditions. We look for cases where the last price at which a good transacts is
otherwise unobserved in the full history of prices [p1, p2, . . . , pT ] except in a sequential run of prices
at the end of the dataset. Thus it must be that pt−k = pT for all k = 0, 1, . . . ,K and some K ≥ 1.
It must also be that pt−K < pt−K−1 (the first price beginning the run of clearance prices is lower
than the previous price).

This rule is conservative in that if a product starts at 19.99 and is reduced to 14.12 and then
later to 12.15 only the 12.15 price is considered a closeout, and 14.15 is also not considered a
temporary sale (since the price does not return to 19.99).

# return vector same size as p

def np_closeout(p):

p=p.values

y=np.zeros(len(p))

idx=np.where(p==p[-1])

run_start=idx[0][0]

#contiguous set of prices that match the final price (without gaps)

if (np.diff(idx)==1).all() & (p[run_start] < p[run_start-1]):

y[idx]=1

return y

C.4. Wholesale Data

We draw on a hand-collected dataset of wholesale prices for the state of Connecticut. Wholesale
prices are a key predictor of retail price changes. These prices were scraped by us from the Con-
necticut Department of Consumer Protection (DCP) from August 2007 to August 2013. These
data are available because Connecticut requires that all licensed wholesalers post prices. Whole-
salers agree to charge retailers these prices for the entire month, and are legally not allowed to
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provide quantity discounts or price discriminate.47 Only 18 wholesale firms have ever sold brands
of distilled spirits that we observe in the Nielsen dataset, and more than 80% of sales come from
just six major wholesalers. Because Illinois and Louisiana do not require that wholesalers publicly
post prices, we do not have wholesale pricing information for these states.

For our welfare calculations we use estimates from Conlon and Rao (2015) of the prices paid
by wholesale firms to importers and distillers. These marginal costs are estimated at the product
level using a structural model of demand in the approach of Berry et al. (2004).

D. Quarterly Pass-Through and Price Points

D.1. Constructing Quarterly Data

We estimate our nonlinear models using quarterly data to avoid the repetitive use of monthly
observations. We allocate weeks to quarters using the last day of each week. This works for
Connecticut where the tax changes on July 1 (the first day of Q3), and Louisiana where the tax
changes on April 1 (the first day of Q2). We have to modify this procedure for Illinois, where the
tax changes on September 1. For Illinois, we change the starting month for each quarter so that Q1
begins in December, Q2 begins in March, Q3 begins in June, and Q4 begins in September. This
way, the tax change happens at the beginning of of Q4 under our adjusted definition.48 When we
aggregate, we take the last price (Nielsen revenue divided by units) recorded in each quarter and
total sales for each product-store-quarter.

For comparison, in the left panel of Table D4 we reproduce Table 2 from the main text using the
quarterly data instead of monthly data. We find that the patterns are broadly similar, though we
have fewer observations, larger standard errors, and less precise control over seasonality. In all but
once case (1750mL bottles in Connecticut) we find evidence that taxes are over-shifted ρ > 1 and
that conditional on a price change, estimated pass-through rates are higher. The latter effects are
muted as one might expect because at the quarterly level price changes are more common overall.

47Connecticut is one of 12 states with a set of regulations known as Post and Hold, which mandates that all
wholesalers post the prices they plan to charge retailers for the following month. Wholesalers must commit to
charging these prices for the entire month (after a look-back period when wholesalers can view one another’s initially
posted prices and adjust their prices downwards without beating the lowest price for the product). For a detailed
analysis of these regulations please see Conlon and Rao (2015).

48These definitions make it difficult to include quarterly fixed effects in regression specifications, as December (a
high sales month) is in Q4 for (CT,LA) and Q1 in IL. For this reason we only ever consider State × Quarter fixed
effects.
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Table D4: Pass-Through: Taxes to Retail Prices (Quarterly)

Quarterly w/ Price Points
All Observations ∆ Retail Price 6= 0 All Observations ∆ Retail Price 6= 0

Connecticut July 1, 2011 Tax Increase of $0.24/L

∆ Tax (750mL) 2.944∗ 4.476∗ 2.723∗ 4.031∗

(0.735) (1.716) (0.532) (1.342)
∆ Tax (1000mL) 2.094∗ 2.639 1.952∗ 2.568

(0.509) (1.227) (0.437) (1.130)
∆ Tax (1750mL) 0.800 0.950 0.766 0.929

(0.373) (0.774) (0.359) (0.765)

Illinois Sept 1, 2009 Tax Increase of $1.07/L

∆ Tax (750mL) 2.738∗ 3.447∗ 2.385∗ 3.130∗

(0.224) (0.256) (0.190) (0.218)
∆ Tax (1750mL) 1.375∗ 1.645∗ 1.226∗ 1.470∗

(0.099) (0.123) (0.096) (0.115)

Louisiana April 1, 2016 Tax Increase of $0.14/L

∆ Tax (750mL) 1.791 3.935 1.983 4.434∗

(1.112) (1.759) (1.002) (1.696)
∆ Tax (1750mL) 1.198 2.159 1.632∗ 3.004∗

(0.576) (0.906) (0.445) (0.735)

Observations 3,035,603 1,606,649 2,948,414 1,443,105
Adjusted R2 0.052 0.094 0.074 0.141

∗ Significant at the 1% level.
Note: We include fixed effects for UPC, quarter of year, and year (all interacted with state). All regressions are weighted
by annual sales for the UPC and store for the year prior to the tax change. Standard errors are clustered at the state-UPC
level. Price points are defined in Table D6.

D.2. Constructing Price Points

When we estimate the ordered logit models, we consolidate several price changes into larger bins.
We report the data in relatively narrow intervals in Table D5. Some important patterns emerge.
First, the majority of price changes are within a few cents of zero. Second, as we have doc-
umented in the main text, the most popular price change intervals are the ones that contain
−$1.00,+$1.00,+$2.00. There are some other important patterns that are worth mentioning. (1)
Connecticut price changes are more likely to be in or around whole dollar increments than price
changes in other states. As described in the main text, this is in part because Connecticut reg-
ulations prevent mid-month price changes that reduce our ability to accurately measure prices
from the revenue and quantity information reported by Nielsen. In addition, Connecticut limits
temporary sales which mean that most reported prices coincide with transaction prices. (2) There
are a relatively small fraction of very large price changes (both positive and negative) which we
will ultimately ignore when estimating our ordered logit models. These may represent undetected
closeouts, or substantial departures from previous pricing strategy and often affect low sales high
price specialty products (with prices ≥ $150). Other non whole-dollar price changes such as 50
cents, represent less than 2% of the observations in the overall data. Thus aggregating over these
price changes is relatively innocuous. (3) moderate positive price changes of $3.00 or more are
relatively uncommon except in Illinois during the quarter of the tax change.

We further consolidate the data in Table D5 to a set of price change increments which we use in
our ordered logit estimation. As before, we assign each price change to an interval, and report its
frequency in the table. We also can assign each interval a value or “Category Value”, these values

45



Table D5: Frequency of Quarterly Price Change Intervals

All Quarters Quarter of Tax Change
Price Change CT IL LA CT IL LA

(-10,-6.03] 0.51 0.85 0.57 0.30 0.82 0.74
(-6.03,-5.97] 0.18 0.36 0.31 0.11 0.24 0.44
(-5.97,-5.03] 0.092 0.25 0.15 0.12 0.16 0.33
(-5.03,-4.97] 0.31 0.60 0.64 0.44 0.30 0.77
(-4.97,-4.03] 0.11 0.48 0.25 0.03 0.33 0.38

(-4.03,-3.97] 0.57 1.11 1.26 0.62 0.90 1.67
(-3.97,-3.03] 0.19 0.81 0.49 0.21 0.54 0.57
(-3.03,-2.97] 0.86 2.25 2.14 0.84 1.48 2.26
(-2.97,-2.03] 0.33 1.37 1.00 0.20 0.85 1.47
(-2.03,-1.97] 1.50 4.84 3.95 1.63 0.94 4.01

(-1.97,-1.03] 0.44 2.29 1.86 0.44 1.16 2.77
(-1.03,-0.97] 1.85 8.03 6.70 4.22 3.63 7.93
(-0.97,-0.53] 0.15 1.24 0.93 0.14 0.67 0.90
(-0.53,-0.47] 0.10 1.08 1.23 0.14 0.56 1.28
(-0.47,-0.03] 0.28 1.57 1.22 0.45 0.91 1.38

(-0.03,0.03] 77.45 43.55 50.73 58.18 14.60 38.77

(0.03,0.47] 0.71 1.64 1.60 0.81 1.54 1.34
(0.47,0.53] 0.63 1.30 1.92 1.30 1.23 3.72
(0.53,0.97] 0.41 1.31 0.97 1.48 1.72 1.11
(0.97,1.03] 5.88 9.32 8.28 14.85 13.46 11.93

(1.03,1.97] 0.62 2.42 2.18 1.42 6.52 3.06
(1.97,2.03] 2.35 4.92 4.29 4.46 16.25 4.95
(2.03,2.97] 0.36 1.43 1.10 0.89 4.92 0.99
(2.97,3.03] 1.10 2.36 2.22 1.87 9.66 2.69
(3.03,3.97] 0.23 0.70 0.46 0.48 2.45 0.47

(3.97,4.03] 0.72 1.13 1.07 1.40 4.07 1.27
(4.03,4.97] 0.15 0.40 0.23 0.54 1.35 0.42
(4.97,5.03] 0.42 0.69 0.74 0.65 4.22 0.60
(5.03,5.97] 0.059 0.22 0.13 0.20 1.10 0.081
(5.97,6.03] 0.23 0.37 0.31 0.35 0.96 0.38

(6.03,6.97] 0.056 0.12 0.071 0.11 0.32 0.062
(6.97,7.03] 0.14 0.22 0.16 0.075 0.56 0.18
(7.03,10] 0.39 0.31 0.29 0.30 0.75 0.36
|∆P | > 10 0.60 0.46 0.53 0.75 0.81 0.70
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are not used in the ordered logit estimation, however we do use these values when calculating our
counterfactuals.

We estimate quarterly pass-through regressions using these transformed values and compare
the results to the un-transformed quarterly data in Table D4. The right panel of Table D4 confirms
that transforming the data this way has little impact on the estimated pass-through rates. In all
cases pass-through estimates using the transformed data are statistically indistinguishable from the
quarterly pass-through estimates using the un-transformed data.

We can examine the in-sample fit of the ordered logit by looking at Connecticut during the
month of the tax change. This period is important because it is the period we use for all of our
counterfactual experiments. In Figure D1 we compare the observed price changes to those predicted
under our main ordered logit specification. In general, the fit of the model is good, though we under-
predict zero price changes and over-predict both positive and negative price changes. We also see
that that the fraction of observations at large price changes > +$3 or < −$3 is fairly small, which
suggests restricting the domain of potential outcomes may not be a major problem. Likewise, we
see that nearly all price changes adhere to the grid of pre-specified price points with the possible
exception of +$0.50, which we examine in more detail in a robustness test below.

Table D6: Frequency of Quarterly Price Changes with Price Points

All Periods During Tax Change
Category Value Interval CT IL LA CT IL LA

-2 (-5.1,-1.5] 4.11 12.78 10.90 4.19 6.10 12.74
-1 (-1.5,-0.25] 2.43 12.12 10.17 5.02 5.67 12.27
0 (-0.25,0.25] 77.97 45.23 52.32 58.68 16.04 40.03

+ 1
2

(0.25,0.75] 1.31 2.71 3.07 2.94 2.81 5.22
+1 (0.75,1.5] 6.45 11.59 10.38 16.27 18.29 14.52

+2 (1.5,2.5] 2.74 6.64 5.67 5.41 21.98 6.45
+3 (2.5,3.5] 1.40 3.29 2.81 2.35 12.86 3.28
+4 (3.5,4.5] 0.89 1.63 1.37 2.05 5.91 1.72
+5 (4.5,5.1] 0.47 0.86 0.82 0.78 4.65 0.67

|∆P | > 5.1 2.23 3.14 2.50 2.29 5.69 3.11

We can also look at how incorporating additional price points affects our estimates of predicted
price changes and pass-through in the ordered logit specification. We use the same quartic poly-
nomial in ∆τ as before, but now instead of restricting ∆p ∈ {≤ −1, 0, 1, 2,≥ 3}, we allow for
additional price points at ∆p ∈ {+0.5} in one specification and further adds ∆p ∈ {−2,+4} in
another. We report the results for predicted price changes in Figure E6. We find that adding the
additional price point at fifty cents has a negligible effect on our predicted price changes, and that
adding the additional price points at {−2,+4}, leads to slightly lower predictions for small tax
changes (because of the −2) and slightly higher predictions for large tax changes (because of the
+4). The overall qualitative patterns are preserved. We prefer to consolidate the +$4,+$5 price
changes with the +$3 price change because outside of Illinois during the month of the tax change
they are very rare and thus difficult to predict accurately.

E. Additional Robustness Tests

Here we consider additional robustness tests.
We vary the elasticity of demand used to calculate counterfactual welfare: deadweight loss,

producer surplus, consumer surplus, tax revenue, and incidence. We replicate Figure 7 but instead
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Figure D1: In-sample fit of Ordered Logit
Note: The figure above compares the predictions of our ordered logit model to the price changes observed in Connecticut

during the month of the tax change. The predictions correspond to our preferred ordered logit model, which employs a quartic

orthogonal polynomial of the tax change. The controls used in the ordered logit model measure the change in wholesale price

since the last change in retail price, total sales by product overall stores, total sales by store over all products, the natural log

of the price for the product the prior quarter at the samestore, whether that store sold the product at the highest or lowest

price the prior quarter and the difference between the price last quarter and the median price across all stores last quarter.

The regression also includes state-varying controls; specifically, it includes state fixed effects and interactions between state

dummies and Total Product Sales, Total Store Sales, log Lag Price, High Price, Low Price and the Relative Price cubic

polynomial. Weights are balanced by state, bottle size and tax change indicator.
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use elasticities εd ∈ {−2.5,−4.5}. These are meant to capture the range of product-level own
price elasticities reported in the empirical literature. See Conlon and Rao (2015) or Miravete et al.
(2018). We provide those results in Figures E2, E3. As we might expect, as we increase the elasticity
of demand, consumers bear less of the burden and firms bear more. The social cost of taxation
responds the opposite way in that as demand becomes more elastic, ∆DWL increases. For the less
elastic demand, the linear pass-through estimate lies strictly above the price points/ordered logit
estimates, and for more elastic demand it lies (partly) slightly below. In both cases the qualitative
patterns remain similar. Both the efficiency and incidence calculations produce a series of U-shaped
curves as we increase the size of the tax that qualitatively match our main result.

We also vary the markups used in the welfare calculations to estimate MCj . In the main
text we assume µ = 1.5, here we also consider µ = 1.2 and µ = 2.0 in Figures E4 and E5
respectively. Increasing the markup increases ∆PS at all values of the tax increase, and increases
the firm portion of ∆DWL. Again, while the scale of the y-axis varies with the markup term, the
qualitative predictions of our model remain the same.

The results are also insensitive to enlarging the set of potential price points. In Figure E6 we plot
the change in price predicted by the baseline ordered logit model as well price change predictions
from an ordered logit with one additional discrete price change of $0.50 and an ordered logit with
additional discrete changes of $0.50, -$2 and +$4. The addition of the $0.50 price change does little
to change the predicted price changes. Adding larger price changes of -$2 and +$4 leads to larger
predicted price changes for larger tax increases, particularly for tax increases above roughly $0.55.
While these larger price changes would shift the burden of bigger tax increases towards consumers
and increase the social cost of taxes, they do not change the general shape of the predicted price
change curve.

Finally, we assess the sensitivity of the results to the exclusion of the change in wholesale price
polynomial. Figure E7 plots the change in price and pass-through rate predicted by two ordered
logits with a quartic polynomial in the tax rate. One is the baseline model presented in the text and
includes all of the control variables, xjt; the second excludes all terms of the change in wholesale
price cubic polynomial. The coefficients on the ∆w polynomial terms in the baseline model are
large in magnitude and significant in the ordered logit model. Dropping the ∆w terms reduces the
fit of the model as the AIC changes by 5, 942, 783.71− 5, 912, 234.04 = 30, 549.67.

However, when we exclude these terms and examine the key outputs of the ordered logit model
in Figure E7 below, we find that there is little to no change in the relevant predictions. Once
we average over all of the covariates xjt, we find out that the average partial effects are relatively
insensitive to the other included covariates. It is reassuring that the relationship between ∆p and
∆τ appears to be robust and not dependent on other covariates (at least once we average over xjt).
Even the apparent difference in implied pass-through rates is small except for at very small tax
changes when a denominator approaching zero magnifies even very small differences.
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Figure E2: Welfare Predictions: Ordered Logit vs. OLS
Top Pane: Effieciency: DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Own Elasticity ε = −2.5

Vertical Lines at Observed Tax Changes.
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Figure E3: Welfare Predictions: Ordered Logit vs. OLS
Top Pane: Effieciency: DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Own Elasticity ε = −4.5

Vertical Lines at Observed Tax Changes.
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Figure E4: Alternative Markups µ = 1.2: Ordered Logit vs. OLS
Top Pane: Effieciency: DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Own Elasticity ε = −3.5

Vertical Lines at Observed Tax Changes.
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Figure E5: Alternative Markups µ = 2: Ordered Logit vs. OLS
Top Pane: Effieciency: DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Own Elasticity ε = −3.5

Vertical Lines at Observed Tax Changes.
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Figure E6: Robustness to Additional Price Points

Figure E7: Robustness to Dropping Wholesale Price Terms
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Figure E8: Counterfactual Welfare by Product Size
Top Pane: Efficiency - DWL per Dollar of Tax Revenue; Bottom Pane: Incidence ∆CS/∆PS.

Own Elasticity ε = −3.5

Vertical Lines at Observed Tax Changes.
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F. Pass-Through by Tax Per Bottle

In Figure 6 we report summary pass-through measures averaged over all products and reported in
terms of tax per liter. Below we break-out implied pass-through rates by bottle size. In general pass-
through rates for different tax increases are similar across bottle sizes. This is as we would expect
since model predictions are nearly identical for ∆P as a function of ∆τ by size. The discrepancy in
predicted price changes comes from differences in other state variables such as relative prices and
wholesale prices, which don’t look tremendously different on average across package sizes.

Figure F9: Counterfactual Welfare by Product Size
Implied Pass-Through Rate by Bottle Size

Vertical Lines at Observed Tax Changes.

G. Unabbreviated Tables

Table 5 reports only the key coefficients of interest from the estimated ordered logit models. The
table below reports coefficients for all variables included in the regressions:
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Table G7: Ordered Logit Estimates ∆p ∈ {−1, 0,+1,+2,+3}
Cubic Quartic Quintic Spline(1)

Tax Change 498.114∗ 523.324∗ 523.353∗ 1.841∗

(28.189) (28.034) (27.995) (0.535)
Tax Change2 -104.691∗ -130.026∗ -129.352∗ -6.094

(27.446) (28.134) (28.172) (3.227)
Tax Change3 -46.388∗ -28.202 -33.103 29.941∗

(16.433) (17.116) (18.926) (8.990)
Tax Change4 -39.447∗ -32.614 3.220∗

(13.420) (17.393) (0.238)
Tax Change5 -7.496

(14.520)
Wholesale price change = 0 −0.444∗ −0.435∗ −0.437∗ −0.434∗

(0.162) (0.163) (0.163) (0.162)
Wholesale Price Change 96.227∗ 96.032∗ 96.172∗ 96.570∗

(18.534) (17.940) (17.899) (17.904)
Wholesale Price Change2 −55.762∗ −44.598 −43.672 −44.772

(20.628) (20.013) (20.176) (20.019)
Wholesale Price Change3 −29.598 −22.685 −22.226 −23.457

(18.614) (18.300) (18.533) (18.348)
Total Product Sales −0.022 0.042 0.045 0.043

(0.061) (0.056) (0.055) (0.056)
Total Store Sales 0.214∗ 0.232∗ 0.233∗ 0.230∗

(0.041) (0.040) (0.039) (0.040)
log Lag Price −0.185 −0.145 −0.141 −0.144

(0.106) (0.114) (0.116) (0.115)
High Price −0.224 −0.242 −0.249 −0.277

(0.103) (0.108) (0.109) (0.108)
Low Price 0.426∗ 0.406∗ 0.404∗ 0.454∗

(0.124) (0.129) (0.128) (0.129)
Relative Price −268.986∗ −186.646∗ −169.923∗ −306.066∗

(7.735) (7.843) (7.903) (8.010)
Relative Price2 216.632∗ 322.345∗ 339.913∗ 46.209

(30.202) (30.587) (30.451) (30.859)
Relative Price3 251.597∗ 488.293∗ 503.261∗ 107.108∗

(4.622) (4.802) (5.056) (4.628)
IL 2.040∗ 2.022∗ 2.024∗ 2.045∗

(0.594) (0.606) (0.609) (0.607)
LA 0.554 0.528 0.591 0.564

(0.430) (0.439) (0.462) (0.439)
Total Prod Sales ×IL −0.212 −0.268∗ −0.271∗ −0.268∗

(0.101) (0.097) (0.096) (0.097)
Total Prod Sales ×LA 0.023 −0.026 −0.038 −0.030

(0.084) (0.079) (0.079) (0.079)
Total Store Sales ×IL −0.280∗ −0.312∗ −0.313∗ −0.310∗

(0.088) (0.085) (0.085) (0.085)
Total Store Sales ×LA −0.292∗ −0.318∗ −0.321∗ −0.317∗

(0.055) (0.053) (0.053) (0.053)
log(pj,t−1)× IL −0.686∗ −0.690∗ −0.692∗ −0.693∗

(0.210) (0.215) (0.216) (0.215)
log(pj,t−1)× LA −0.178 −0.193 −0.213 −0.199

(0.153) (0.158) (0.164) (0.158)
High Price ×IL 0.155 0.179 0.188 0.194

(0.167) (0.170) (0.171) (0.170)
High Price ×LA −0.469∗ −0.467∗ −0.451∗ −0.434∗

(0.143) (0.147) (0.149) (0.147)
Low Price ×IL −0.356 −0.364 −0.363 −0.393

(0.256) (0.259) (0.259) (0.259)
Low Price ×LA −0.053 −0.051 −0.038 −0.090

(0.167) (0.171) (0.169) (0.171)
Relative p× IL −395.320∗ −510.813∗ −529.305∗ −365.164∗

(5.383) (5.408) (5.376) (5.585)
Relative p× LA −79.486∗ −171.796∗ −184.782∗ −40.280∗

(3.449) (3.558) (3.613) (3.518)
Relative p2 × IL −142.681∗ −232.909∗ −248.312∗ 31.935

(16.919) (16.961) (16.829) (17.279)
Relative p2 × LA −87.814∗ −192.691∗ −216.566∗ 86.955∗

(11.160) (11.491) (11.542) (11.351)
Relative p3 × IL −275.796∗ −509.431∗ −516.951∗ −130.587∗

(4.036) (4.063) (4.127) (4.095)
Relative p3 × LA −106.389∗ −340.357∗ −357.318∗ 45.175∗

(1.630) (1.826) (1.993) (1.577)

Observations 2,371,792 2,371,792 2,371,792 2,371,792
State-UPCs 3,567 3,567 3,567 3,567
Out of Sample Likelihood 1,025,925 1,025,797 1,025,900 1,024,963
BIC 2,052,727 2,052,498 2,052,731 2,050,829

Note: The table above reports estimates from ordered logistic regressions of quarterly price changes on quarterly tax changes
with different parameterizations of the tax change and a number of controls. The first column employs a cubic orthogonal
polynomial of the tax change while columns 2 and 3 use quartic and quintic orthogonal polynomials of the tax change,
respectively. The final column uses a spline with a knot point at tax change = 1 and its coefficients are not polynomial
order. The controls measure the change in wholesale price since the last change in retail price, annual sales of the product at
that retailer, annual unit sales at that retailer of all products, the natural log of the price for the product the prior quarter
at the same store, whether that store sold the product at the highest or lowest price the prior quarter and the difference
between the price last quarter and the median competitor price for the same product last quarter. All four regressions are
weighted by product-store sales in the year prior to the tax change. Weights are balanced by state, bottle size and tax
change indicator. ∗ Significant at the 1 percent level. All standard errors are clustered at state-UPC level.
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