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1. Introduction

A large literature in empirical industrial organization (and economics more broadly) is concerned

with estimating demand systems for differentiated products. These demand systems often have

two key deliverables: the first is the own-price elasticity of demand, and the second is the pattern

of substitution across products.

One key challenge in this literature is that the number of cross-product effects grows with

the square of the number of products. A demand system with J products requires estimating

J2 cross-elasticities. This is true for common linear and log-linear demand systems, as well as

the second-order flexible Almost Ideal Demand System of Deaton and Muellbauer (1980). This

presents practical challenges both in terms of the required amount of variation in the data, and the

need for additional instrumental variables.

The literature has primarily addressed this challenge by relying on parametric restrictions or

treating products as bundles of characteristics, and formulating demand (and substitution pat-

terns) in terms of these characteristics. For example, the logit model (McFadden, 1974) exhibits

the independence of irrelevant alternatives (IIA) property, which restricts substitution to be propor-

tional to observed market shares. The related nested logit (McFadden, 1978) exhibits proportional

substitution within pre-determined groups and also across groups themselves. Finite (or continu-

ous) mixtures of IIA logits can generate arbitrarily flexible substitution patterns under additional

assumptions (McFadden and Train, 2000). In order to obtain that flexibility, the most common

approach is to consider continuous mixtures of consumer preferences for observed characteristics

and project substitution patterns onto product characteristics and their interaction with consumer

demographics. This is the approach most commonly adopted in industrial organization (Berry

et al., 1995, 1999; Nevo, 2000). While these models can be flexible, they have some drawbacks.

The first is that their flexibility is generally limited by how well the underlying substitution patterns

are explained by the observed product characteristics. The second is that even with modern tools,

they can be computationally intensive and challenging to estimate, particularly as they become

more flexible (Conlon and Gortmaker, 2020).

We propose a simple esimator, designed for an environment where a researcher observes aggre-
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gate data on market shares (the probability that a consumer selects a particular product) and the

matrix of second choices (the conditional probability that a consumer chooses a particular product

if their first choice product is not available) from a single market. We provide a simple, easy to

implement estimator based on a semiparametric mixture of logits to this first- and second-choice

data. The key feature of our estimator is that we formulate the problem in product space rather

than characteristic space, but avoid the problem of estimating J2 elasticities by restricting the rank

of the substitution matrix. Instead, we build on a result from Conlon and Mortimer (2021a) and

write second-choice probabilities in terms of the first-choice probabilities for a finite number of

types I. This reduces the number of parameters to I × J , and restricts the rank of the matrix of

substitutes to be no more than I.

Our approach is likely to be successful when underlying substitution patterns exhibit a low rank

structure for which I ≪ J . When this is the case, we can extend our estimator to the case where

second-choice probabilities are only partially observed and redefine our problem as one of matrix

completion. Our estimator also tends to produce choice probabilities that are sparse, so that not

every individual type chooses each option with positive probability. This can be viewed as either

a feature: it produces choice probabilities and substitution patterns that are more extreme than

most mixed logits and is robust to not all individuals “considering” all products; or a bug: under

full consideration it is no longer consistent with full support IID error terms.

Though our estimator recovers individual specific first-choice probabilities, we show it is straight-

forward to recover indirect utilities and tastes for product characteristics. This builds on a large

literature of second-stage approaches in these kinds of models (Nevo, 2001; Bayer et al., 2007;

Bayer and Timmins, 2007; Grieco et al., 2023). The most important parameters to recover in a

second-stage are likely those governing (endogenous) prices. We show those parameters can be

estimated using: (a) standard restrictions arising from instrumental variables; (b) auxiliary infor-

mation on price-cost margins; or (c) auxiliary estimates of own-price elasticities. Together with

the substitution patterns, these provide semiparametric estimates for most of the objects necessary

to make counterfactual equilibrium predictions (mergers, taxes and subsidies, etc.). While aca-

demic researchers rarely have access to high quality data on price-cost margins, such information
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is routinely provided to antitrust agencies as part of merger investigations.

What sets our estimator apart from the prior literature is that the data requirements are quite

different. Rather than utilizing cross-market variation in the characteristics and assortment of

products (see Berry and Haile (2014) on “aggregate data” for formal identification results), we rely

on observing second-choice data for a single market (more in line with Berry and Haile (2022) on

“micro data”). A valid concern is whether such second-choice data are readily available and what

the quality of the data is likely to be. An obvious source of such data would be stated-preference

second-choice data arising from consumer surveys. For example, the UK Competition and Markets

Authority (CMA) frequently conducts surveys asking customers questions such as “if this super-

market were to close, where would you shop?” (Reynolds and Walters, 2008). Likewise, Berry

et al. (2004a); Grieco et al. (2021) observe second-choice probabilities for a subset of automobile

consumers and use these to inform mixed logit estimates of demand parameters. Another (inexpen-

sive) alternative would be to design purpose-driven surveys such as Conlon and Gortmaker (2023)

who survey consumers on second-choice soft-drink choices, or Magnolfi et al. (2022) on ready-to-eat

breakfast cereal.1 A long literature in marketing studies the design and implementation of conjoints

for similar purposes Allenby et al. (2019). A (possibly more credible) alternative would be to rely

on revealed preference approaches to estimate second choices. For example, Conlon and Mortimer

(2013) show how to exploit exogenous variation in the timing of stock-out events, while Conlon

et al. (2023) experimentally manipulate product assortment to estimate second-choice probabilities.

An online alternative might be to experimentally manipulate the search results facing consumers

in order to recover revealed-preference second-choice probabilities.

There are two interpretations of our approach: the first is that it provides a method to use

data on second choices to estimate the parameters of a demand system without relying on product

characteristics. The second is that it provides a way to rationalize surveys and other second-

choice data in a way that is consistent with a discrete-choice demand framework. While academic

researchers do not always need to make this connection, it is frequently relevant for antitrust

1The latter asks consumers to rank which products are more similar to one other rather than which product they
prefer, though the design and implementation of the online survey could be easily adapted. The former survey was
completed for less than $200 over the course of a week.
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agencies. As an example, the CMA might be inclined to treat second-choice surveys as if they

were the diversion ratios that enter the first-order conditions of merging parties and calculate UPP.

Or, the DOJ or FCC may be inclined to use observational data on customer flows (sometimes

called “win/loss data”) in place of diversion ratios.2 Likewise Farrell and Shapiro (2010) supposes

that diversion ratios might be observed in the “normal course of business,” implying that diversion

ratios are data that firms might track internally, and could be requested by antitrust authorities as

part of an investigation. Conlon and Mortimer (2021a) point out that diversion ratios measured

from small price changes, quality changes, and second-choice data are related but not identical.

Our framework provides a way to use second-choice data to recover the underlying primitives of

the demand system, which can then be easily translated into the object(s) of interest, such as the

appropriate UPP measure, or merger simulation.

In order to compare our semi-parametric method against other commonly used parametric

approaches, we conduct two empirical exercises. First we estimate our semi-parametric model and

mis-specified parametric models on data generated from a given model and compare the models’

fit on out-of-sample second-choice probabilities. Using data from Conlon and Mortimer (2021b),

we estimate a nested-logit model of demand with nests corresponding to product categories and

an outside good in a separate nest, and a random-coefficients model of demand with independent

normally distributed tastes βi on the constant term and three observable product characteristics.

We use these estimated models to generate two fake datasets using analytic formulas. We then

compare our model’s out-of-sample fit on predicted substitution patterns for rows of the second-

choice matrix not used in estimation with three common parametric specifications: a simple logit, a

random coefficients logit model with iid normal tastes over nests (RCN), and a random coefficients

model with iid normal tastes over characteristics (RCC), estimated via Maximum Likelihood with

and without additional information on second-choice probabilities.

When fitting the fake data generated by the nested-logit model, the parametric random-coefficients

nested logit (RCN) model fits the data well. This model is almost correctly specified and differs

only in whether the functional form follows a normal distribution or an extreme value distribution.

2See Qiu et al. (2021) for an in depth analysis of win/loss data.
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The addition of second-choice moments improves the model’s prediction error, resulting in nearly

perfect fit. On the same data, the random-coefficients model based on characteristics (RCC) ap-

pears to be a poor fit while our semi-parametric model performs as well as, or better than, the

RCN model estimated from observational data alone (and much better than the RCC model with

or without additional moments). Similarly, when fitting fake data generated by the model based on

characteristics, the RCC model fits well, the RCN model performs poorly, and our semi-parametric

approach performs very well.

As a second exercise, we apply our estimator to a subset of data from Grieco et al. (2021),

consisting of one year (2015) of aggregate market shares and the MaritzCX survey, which provides

a matrix of second-choice probabilities.3 The exercise demonstrates the estimator’s effectiveness

when dealing with a large number of products (J = 318) in a context for which substitution patterns

may be influenced by endogenous characteristics, such as prices. To evaluate the estimator, we

adopt the same cross-validation approach used in the previous exercise and compare our preferred

specification to the parametric model estimated in the Grieco et al. (2021) study.

In this context, our semi-parametric estimator outperforms state-of-the-art parametric models

that use significantly more data. With our preferred specification (selected by cross-validation),

our model can rationalize both extremely high diversion ratios and more spread-out substitution

patterns. For instance, our model can match the substitution between two cargo vans at around

67% and consistently keep the substitution between similar sedans below 10%. In contrast, logit-

type parametric models are unlikely to achieve this, as shown by our comparison with the estimates

from Grieco et al. (2021).

In related work (see Conlon et al. (2023)), we apply our estimator to experimental second-

choice data for a subset of available products from Conlon and Mortimer (2021b).4 That work

demonstrates that even if one only observes second-choice substitution patterns from a subset of

products, estimation of substitution patterns between remaining products can be accomplished as

3The MaritzCX survey includes recent car purchasers and is based on new vehicle registrations.
4The experiment involved multiple treatment arms for which one or two products were exogenously removed

from vending machines in downtown Chicago office buildings. Thus, the resulting data consists of second-choice
probabilities from only a few products relative to the whole set of products available, so that a significant portion
of the matrix of second choices for all products is missing. This provides an illustration of the low rank matrix
completion aspect of our approach.
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a matrix completion exercise. This indicates that our estimator can be highly adaptable and easily

estimated by antitrust authorities under time constraints and with limited data.

The remainder of the paper proceeds as follows: Section 2 reviews the results in Conlon and

Mortimer (2021a) and describes the estimator. Section 3 provides the results of the Monte Carlo

simulations. Section 4 provides the results of the estimation exercise on the survey second-choice

data from the U.S. auto industry. Section 5 provides extensions and Section 6 concludes.

2. Model

2.1. Our Estimator

Throughout we use lower case bold to denote the dim(J ) vector of all choices (e.g. si,p) and

UPPER CASE BOLD to denote the dim(J ) × dim(J ) matrix of all choices (e.g. D), and

caligraphic font Sj ,Dj→k to denote observed data. We will at times abuse notation and allow J to

denote both a set and its cardinality dim(J ) = J .

We begin with a researcher who has data on consumers who make a discrete choice among a

set of products in J including an “outside” or “no purchase” option which we denote with j = 0.

Furthermore, we assume that the researcher has access only to aggregate data on the first choices

Sj and second choices Dj→k for consumers facing a single choice environment (market). We denote

the first and second-choice probabilities below:

Sj = P(chooses j ∈ J ) (1)

Dj→k = P(chooses k ∈ J \ {j} | chooses j ∈ J ) (2)

Later, we allow for a set of (j, k) tuples for which Dj→k is observed, denoted PΩ, and for which it

is unobserved denoted PΩ.

A common approach is to assume that these choice probabilities are generated by consumers i

making discrete choices to maximize (random) indirect utilities: uij = Vij + εij . The most common

specification assumes that εij is IID and type I extreme value (Gumbel) distributed, so that the
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probability that i chooses j (conditional on the vector of Vij ’s denoted Vi) is given by:5

P(uij > uij′ ; for all j ̸= j′ | Vi) =
eVij∑

j′∈J eVij′
≡ sij(Vi). (3)

The unconditional probabilities require integrating out over the distribution of Vij , which is typically

done by discretizing the distribution of heterogeneity with some probability weights corresponding

to different vectors of P(Vi = vi) = πi so that πi ≥ 0 and
∑I

i=1 πi = 1 (so that π constitutes a

valid probability measure):

P(uij > uij′ ; for all j ̸= j′) =

∫
sij(Vi) f(Vi) ∂Vi ≈

I∑
i=1

πi sij(Vi) ≡ sj . (4)

It is helpful to define some additional notation: let si be the dim(J ) vector of type-specific (con-

ditional) choice probabiltiies with entries sij defined in (3), let s be the vector of unconditional

choice probabilities sj defined in (4), and let S be a dim(J )× I matrix with column vectors si. If

π denotes an I vector with entries πi then we can write s = Sπ.

In our previous work, Conlon and Mortimer (2021a), we show that for any mixed logit, the

second-choice probabilities from (2) can be written in terms of the weights and the conditional and

unconditional probabilities (πi, sij , sj) from (3) and (4):6

Dj→k =
I∑

i=1

πi ·
sik

1− sij
· sij
sj

. (5)

It is convenient to interpret (5) as the (j, k)th entry in the second-choice matrix D.

Our estimator simply matches the observed first and second choice data from (1) and (2) with

the predicted versions from (4) and (5). We can accomplish this by minimizing the (potentially

5An alternative to the multinomial logit model is the multinomial probit model. This lets εi ∼ N(0,Σ) where Σ is

a J × J matrix. Like the log-linear model, this requires estimating on the order of J·(J−1)
2

parameters, which makes
it impractical for large J .

6For the case of “second choice data”, Conlon and Mortimer (2021a) show it doesn’t matter whether second
choices are obtained by raising the price to the choke price, decreasing the quality such that no individuals purchase,
or removing the product from the choice set. In all cases, we average over all individual diversion ratios Djk,i =

sik
1−sij

and weight them in accordance with the fraction of j’s sales they represent wi =
sij
sj
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weighted) least squares error (ℓ2/Frobenius norm) so that:

min
(S,π)≥0

∥PΩ(D −D)∥ℓ2 + λ ∥S − Sπ∥ℓ2 with π · 1I = 1, 1′JS = 1I . (6)

The goal is to match the observed second choice probabilities in D and also the first-choice prob-

abilities (market shares) S subject to some tuning parameter (Lagrange multiplier) λ. A typical

challenge in computer science for problems like (6) is to avoid overfitting by restricting either the

rank of D or its nuclear norm (sum of singular values). Below, we show that the rank of D is

bounded by the number of types I, and we can restrict the rank of the matrix by directly limiting

the number of types. More generally, we propose that the tuning parameters (λ, I) be chosen by

cross-validation.

To see the rank restriction imposed by I we can simply re-write (5) in matrix form as:7

D =

(
I∑

i=1

πi · si ·
[

1

(1− si)

]T
· diag(si/s)−1

)T

= diag(s)−1 ·

(
I∑

i=1

πi ·
[

si
(1− si)

]
· siT

)
(7)

This shows that we can write D as the sum of I rank-one matrices (outer product of vectors). The

immediate result from (7) is that it shows us how to construct a low-rank I ≪ J representation of

a potentially large J × J matrix of substitution patterns. The plain IIA logit model corresponds

to I = 1, in Appendix A.2 we show that the nested logit model limits the rank to be less than or

equal to the number of nests.

We can also re-write the constraints in (6) as ℓ1 constraints so that:

min
(S,π)≥0

∥PΩ(D −D)∥ℓ2 + λ ∥S − Sπ∥ℓ2 with ∥π∥ℓ1 ≤ 1, ∥si∥ℓ1 ≤ 1. (8)

It should be clear that this represents a non negative LASSO problem (Wu et al., 2014). This

7Here diag(si) is a diagonal matrix with entries sij and diag(s)−1 is a diagonal matrix with entries 1
sj
. The

diag(s)−1 term is serving to row-normalize the matrix so that
∑

j ̸=k Djk = 1 for each row. The diagonal entries

Djj,i =
sij

1−sij
, while not interpretable as a diversion ratios, are related to the willingness to pay (WTP) for product

j (at least when sij isn’t too large). See Conlon and Mortimer (2021a).
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means we are likely to get sparse solutions to the program above so that sij = 0 for many (i, j). An

economic interpretation might be that this is a product that type i really despises Vij → −∞, or

that type i is unaware of or does not consider j.8 In a sense, we are agnostic about (and robust to)

the particular reason for which sij = 0 (though it will largely be a result of the ℓ1 penalty). Because

second-choices depend on sik
1−sij

, it is also worth noting that sparsity in si will tend to create sparsity

in D, particularly when the observed data D is sparse (or nearly sparse).9 A common critique of

logit and mixed logit demand systems is that all products are necessarily substitutable (at least a

little) with one another.10

We should also note that the estimator in (6) or (8) is a minimum distance estimator, and the

underlying asymptotic thought experiment would require either: (a) observing the complete matrix

D; or (b) taking the number of choices J → ∞ as in Berry et al. (2004b).

[Should we show that standard MD inference applies here?]

2.2. Second Stage

Our estimator recovers estimates of Ŝ or ŝij and π̂, but these alone are not sufficient to calculate

price-elasticities and consumer welfare. Following a long literature that separates the estimation of

heterogeneous preferences from addressing the endogeneity of prices (Goolsbee and Petrin, 2004;

Bayer et al., 2007; Bayer and Timmins, 2007; Grieco et al., 2023), we consider a second-stage in

order to recover coefficients on prices.

In our first-step, we required the mixed logit only in the definition of second-choice probabilities

in (5). In order to recover price sensitivities, we must lean harder on the assumption that we can

write uij = Vij + εij where εij is an IID Type I extreme value error term. Following the logic in

8A large literature examines consideration sets in discrete choice models which may result from rational inattention
(Matějka and McKay, 2015; Manzini and Mariotti, 2014), cognitive capacity, or random attention (Dardanoni et al.,
2020; Masatlioglu et al., 2012). A significant challenge in this literature is to separate the impact of consumer prefer-
ences from heterogeneity in consideration sets. Typically, this requires either the presence of an exclusion restriction
that shifts consideration independently of preference (Goeree, 2008), or exploiting differences in functional forms
(Abaluck and Adams-Prassl, 2021). Other recent approaches can account for unobserved and limited consideration,
but at the cost of potentially losing point identification (Barseghyan et al., 2021a,b).

9The expression in (5) implies Djk,i = 0 IFF sij = 0 or sik = 0, which creates neither a theoretical nor practical
problem.

10One way this has been addressed previously is the pure characteristics model of Berry and Pakes (2007).
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Berry (1994) we can write:

Vij − Vi0 =


ln ŝij − ln ŝi0 if ŝij > 0,

n.a. if ŝij = 0.

(9)

This differs from the usual setup in two ways: (1) we recover i specific utility parameters Vij ;

(2) in the case where we have sparse choice probabilities sij = 0 we need to be careful about

interpretation. If the reason that sij = 0 is that the consumer i is unaware of j, then we can simply

ignore the fact that sij = 0. If instead, sij = 0 because a consumer is highly price sensitive and

never chooses a luxury car, then we have to model the selection rule more carefully.

Instrumental Variables

Most of the literature assumes that Vi0 = 0 for each type i, though it isn’t clear that is necessarily

required here.11 Our goal is to recover βp
i =

∂Vij

∂pj
, and we present several approaches under different

data environments. The most familiar approach would be to construct a second minimum distance

estimator, where we stack up all (i, j):

min
β<0,ξ

∥∥z′j(ln ŝij − ln ŝi0 − xjβi − pjβ
p
i + ξj)

∥∥ (10)

This approach would require instruments for prices zj as in Berry et al. (1995) or Berry and Haile

(2014). It is unlikely is that our instruments will vary across i as well as across j. Though if we

were willing to set ξj = 0, we could run I separate cross-product regressions (which is the primary

source of variation here). Likewise if J is large, and we are not interested in the interpretation

of non-price βi coefficients then we can potentially estimate a partially linear model separately for

each i:

min
βp
i ,fi(·)

∥∥z′j(ln ŝij − ln ŝi0 − fi(xj)− pjβ
p
i )
∥∥
ℓ2
.

Observed Elasticities

11This would be sumsumed into the type-specific coefficient on the constant βi0 below.
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An alternative approach would be to calibrate βp
i =

∂Vij

∂pj
using observed own-price elasticities.

These might be estimated in any number of ways: from a (quasi)-experiment; from another study;

or from a simpler (ie: plain logit) demand system on observational data.

For any mixed logit, the own-price elasticities follow a well-known format, which depends on

objects we can estimate in the first-stage and βp
i , and we can construct another minimum distance

estimator:

min
βp
i <0

∥∥∥∥∥Ejj − pj
sj

I∑
i=1

βp
i · π̂i · ŝij · (1− ŝij)

∥∥∥∥∥
ℓ2

. (11)

We need to observe at least as many elasticities as types I. Things simplify further if βp
i = βp, in

which case a single elasticity (or the average elasticity) is sufficient to identify βp. In our empirical

example, we estimate βp
i using the own-elasticities estimated in .

Observed Price-Cost Margins

Another possibility is that average price cost margins (pj − cj) are often provided to antitrust

authorities as part of merger review. Ideally these would be observed at the product level, but

also possibly at the firm level. We need to construct ∆ the J × J matrix of demand derivatives

with entries
∂qj
∂pk

. We also need one additional piece of information, the ownership matrix H which

typically has entries equal to 1 if products (j, k) have the same owner and zero otherwise. This

allows us to write:

c = p−

(
H⊙

(
I∑

i=1

πi ·∆i(β
p
i )

))−1

s, (12)

∆i(β
p
i ) = βp

i

(
−si si

T + diag[si]
)
.

This would enable us to match observed and predicted price-cost margins, or observed marginal

costs to predicted marginal costs.

min
βp
i <0

∥∥∥Cjj − cj(β
p
i ,H, Ŝ, π̂)

∥∥∥
ℓ2
. (13)

As with the elasticity we could match price-cost margins for a subset of products (or for the average
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by firm, etc.).

2.3. Optional ℓ2 Penalization

Our estimator is already using a non-negative LASSO ℓ1 penalty term on sij and π as part of the

“adding up” constraint that guarantees these are valid probability measures. There is a significant

literature on joint ℓ1 and ℓ2 penalization (called elastic net) and see Heiss et al. (2022)

For all three cases in Section 2.2, we may want to add a penalty term to our minimum distance

estimators of the form λp · ∥βp
i −

∑
i πiβ

p
i ∥ℓ2 or λp · ∥βp

i ∥ℓ2 to shrink the recovered βp
i parameters

towards the overall mean, or towards zero respectively. This would have the effect of penalizing

“outliers” in βp
i , which may be useful if we rely on cross-sectional variation with a limited number

of observations, or to prevent extreme and imprecise βp
i values for types where πi is very small.

Likewise, even though we are already placing an ℓ1 penalty term on sij such that
∑

j sij = 1, we

may also want to consider an ℓ2 penalty term of the form: ∥sij − s∥ℓ2 or ∥sij − S∥ℓ2 . This would

have the effect of shrinking the estimated sij back towards the plain logit “prior”, and preventing

the individual types from getting “too extreme”. This might be useful as I becomes large and the

variance of estimates increases, though it may be easier to estimate a model with fewer types. This

may not be good idea if the true distribution of si includes extreme types.

Finally, we could consider an ℓ2 penalty on the type-weights πi so that
∑I

i=1 π
2
i ≤ cπ. This

would effectively penalize the concentration/HHI of the types and push us towards estimating

types with weights 1
I and away from types with very large or very small weights. This might be

of practical use if models with large numbers of types “collapse”, but it is otherwise not obviously

useful.

2.4. Comparisons

Our semiparametric model is different from the fixed grid estimator of Fox et al. (2011); Heiss

et al. (2022) who formulate the problem in characteristic space and construct a “prior” on mixture

distribution for the coefficients β∗
i ∼ g(β). They draw a large number of points βi (ie: > 1000)

from the prior, and then compute s∗ijt(βi,xt) ahead of estimation on a fixed grid. They use a

non-negative Lasso/L1 penalty to impose sparsity such that a small number of types (ie: 20− 50)
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receive positive weight. They search over π in order approximate the true f(βi) via a finite mixture.

min
π

∥S(xt)− S∗
i (β

∗
i ,xt) · π∥ℓ2 subject to π · 1I = 1, s∗ijt(β

∗
i ,xt) =

eβ
∗
i xjt

1 +
∑

j′ e
β∗
i xj′t

(FKRB)

Both models estimate a constrained least squares problem for the aggregate shares, though theirs

requires variation in xt across markets, and ours requires second choices within a single-market.

Another major difference is that we search over both the probabilities of types and the preferences

of the types (sij , πi) in product space, rather than considering a pre-specified grid of types in

characteristic space and searching over πi only.
12 The most important difference is that in their

model generates a large number of types I for the fixed grid, while our approach is meant to keep

I (and the rank of the second-choice matrix) as small as possible.

Another semiparametric model is Raval et al. (2017). Their semiparametric model for hospital

demand groups consumers into g ∈ G bins based on observable characteristics such as income, zip

code, severity of diagnosis, and age. They have a tuning parameter on the minimum number of

consumers per bin (which governs the number of bins). Within a group they assume all individuals

have the same βg but do not require anything about βg and βg′ other than that ξj is common across

groups. They assume that preference follow a plain logit within each bin:

sg(i),j =
eβgxj+ξj

1 +
∑

j′ e
βgxj′+ξj′

, Dkj,i =
sg(i),j

1− sg(i),k
(RRT)

Raval et al. (2022) estimate diversion for hospitals using the diversion above and use observed

second-choice probabilities (from natural disaster induced closures) to validate models of hospital

demand, but do not use this variation to estimate the parameters of the model. The main difference

between our models is that they are able to observe consumers and group them into demographic

bins before estimation, whereas we consider aggregate data and must infer the mixing distributions.

In short, Fox et al. (2011) fix a grid of β∗
i (and hence s∗ij) and estimate πi using non-negative

Lasso, while Raval et al. (2017) know the assignments of individuals to types g(i), and type specific

shares sg(i),j , and estimate βg for each group. We estimate both: (πi, sij). However, our method

12Arguably it would be straightforward to include product dummies in xj and reformulate their approach in product
space as well.
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requires observing at least some second choices, and our goal is to explain substitution with the

smallest number of types possible.

Our approach in (6) is also related to a large class of problems in computer science known as

“non-negative matrix factorization” which solve:

min
W∈R(J+1)×I

+ ,H∈RI×(J+1)
+

(Djk − (W H)jk)
2 . (NMF)

This looks for a rank I approximation to D in terms of two compontent matrices X and W

that each have non-negative elements. Absent the non-negativity constraints it is well known

(Eckart–Young–Mirsky theorem) that the singular value decomposition gives the best rank I ap-

proximation to D.

On one hand, our discrete choice setup places even more assumptions on (NMF) than simply

non-negativity. Rather than factorize into two rank I matrices (W,H) we search for a single rank

I matrix S and impose a particular relationship between the columns of S and the matrix D.

Our problem may be easier because D has a predictable structure and is amenable to a low-rank

approximation, and discrete choice theory provides some structure on the component vectors si,

including that sj =
∑

i πi · si.13

[Do we need a formal identification result?? – seems likely for I ≪ J case.]

2.5. Computational Details

The minimum distance problem in (6) is non-convex, but easy to estimate relative to typical GMM

or maximum likelihood estimators, and can generally be solved within a few seconds with a standard

constrained L-BFGS optimization routine, or with an unconstrained Stochastic Gradient method

(such as Adam (Kingma and Ba, 2017)). The objective is quadratic in parameters, and most of the

constraints are quadratic or linear with the exception of the D matrix in (7) which are nonlinear

and non-convex (though the derivatives are simple).

13One challenge of (NMF) is that it may not be identified (Ke et al., 2022) for the classic Latent Dirichlet Allocation
(LDA) problem of Blei et al. (2003). It isn’t clear whether or not the additional structure we impose is sufficient to
restore identifcation.
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Typically, latent class logit models parameterize Vij(xj) = βixj + ξj , and are estimated via

full information maximum likelihood or via the EM algorithm as described in Greene and Hensher

(2003). Estimation is often challenging for finite mixture models which estimate both πi and βi.
14

Our approach is both much easier to estimate, and is not necessarily restricted to interactions with

observed covariates xj . The main difference between our approach and the typical latent class logit

is that we are estimating the model in product space. The summing up constraints are what enforce

that the resulting model is consistent with mutually exclusive and exhaustive discrete choice.

In general, the problem scales with the number of products J and number of types I but not the

number of “markets” or “observations”. With I types there are (J + 1)× I parameters.15 If I = 1

then we are just fitting an IIA logit by least squares (with auxiliary moments for D). If I = 2 then

we have two latent classes like Berry and Jia (2010) use for business and leisure travelers. As we

increase I, we increase the complexity of the model. In the limit we should be able to approximate

any D as I → J .16 Our hope is that like many phenomenon, D may have a low-rank structure, or

at least be amenable to low-rank approximation (Chen et al., 2021; Udell and Townsend, 2019).

3. Monte Carlo Simulations

In order to compare our semi-parametric method against other common parametric methods, we

generate data from a given model and estimate both our semi-parametric model and mis-specified

parametric models, then compare the models’ fit on out-of-sample (on PΩ) second-choice probabil-

ities
∥∥PΩ(D −D(S, π))

∥∥ in both ℓ2 (MSE) and ℓ1 (MAD).

This exercise has two goals: verify whether our estimator can approximate common models, and

identify how much data and model complexity is sufficient to achieve reasonable performance. In

addition to our semi-parametric model, we estimate two mixed logit models with Vij(xj) = βixj+dj

where βi ∼ N(µ,Σ) and Σ is diagonal. In the first, xj is given by a set of dummies on product

categories, which we label random coefficients on nests or (RCN). In the second xj is given by the

14Maximum likelihood estimation of the latent class logit is notoriously difficult. The gmnl R package only offers
FIML estimation for small problems and not EM estimation for large problems. Greene and Hensher (2003) propose
an EM algorithm which appears to only be available in NLOGIT/LIMDEP.

15This ignores the parameters that are pinned down by the constraints in (6) such as sj .
16We don’t have a formal result here, though it seems like it would merely be a restatement of McFadden and Train

(2000).

15



observed characteristics in the vending data (salt, sugar, and nut content), which we label random

coefficients on characteristics (RCC).

3.1. Data Generating Process

We start with the data from Conlon and Mortimer (2021b) which included observational data on

66 vending machines in office buildings in downtown Chicago. For several weeks, the authors ran

six experiments where the top-selling products in each category were removed.

We begin by estimating a nested logit model Vijt = δj + ξt + εijt(ρ) using the observational

data for J = 45 and G = 6 nests corresponding to each product category (Salty Snacks, Chocolate

Candy, Non-Chocolate Candy, Cookies, Pastry, and Other) as well as an outside good in a separate

nest. We calibrate ρ = 0.25 so that diversion to the outside good is approximately 30%.

We repeat this exercise on the same data where instead we calibrate a random coefficients model

Vijt = βixj + δj + ξt with independent normally distributed tastes βi on (constant, salt, sugar, and

nut content).17

We then treat these parameter estimates as the “ground truth” θ0, and use the estimated nested

or random coefficients logit model to generate fake data. We construct two datasetes: one single

market where all products are available and T = 250 markets of M = 1,000 consumers where

only J = 30 products are available in any given market. For each dataset, we generate shares and

second-choices following the analytic formulas given by the nested logit described in Appendix A.2.

1. Set the parameters of the model, product mean utilities and nonlinear parameters θ0 = [δj , ρ]

or θ0 = [δj ,Σ].

2. Generate the “true” shares S(x, θ0) and second-choice probabilities D(x, θ0) assuming full

availability J = 45 using the nested logit formulas from Appendix A.2.

3. For each market t = 1, ..., T , draw J = 30 products (plus an outside good) to be available in

that market xt, making sure each nest g contains at least one product.

(a) Compute shares and multiply by market size M · sj(xt) to obtain quantities qj(xt).

17We calibrate the diagonal elements to be somewhat more heterogeneous than those estimated in Conlon and
Mortimer (2021b) σ0 = 3.52, σsalt = 1.00, σsugar = 1.8, σnuts = 0.38
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(b) Generate the J × J market specific second-choice matrix D(xt).

3.2. Comparing semi-parametric and parametric models

To compare our model with common parametric specifications, we estimate two random coefficients

models, RCC and RCN on the T = 250 markets from our fake data. We estimate the parametric

models via Maximum Likelihood. In alternative specifications, we augment these data with addi-

tional moments matching selected rows from Dj,·(x) to the second-choice probabilities predicted by

the model for the full sample of J = 45 products Dj,·(x, θ).

Our semiparametric estimator from (6) uses less data than the parametric models. We don’t

use any of the observed variation in choice sets across markets t, nor any product characteristics.

Instead, we use only the aggregate shares when all products are available S(x, θ0) and a subset of

L ∈ {6, 8, 10} rows from the matrix of second-choice probabilities Dj,·(x, θ0).
18

Because the models are parametrized differently, rather than compare θ̂, we instead compare

models based on out-of-sample predicted substitution patterns
∥∥∥PΩ

(
D(x, θ0)−D(x, θ̂)

)∥∥∥. We

compare models based only on row not used in estimation PΩ. We report the out-of-sample MSE

and mean absolute deviation (MAD) in Figure 1. What is immediately obvious is that the RCN

model fits the data quite well in terms of MAD and RMSE. Because the data generating process is

a nested logit, this model is nearly correctly specified and differs only as to whether the functional

form follows a normal distribution or a nested logit distribution. The additional second-choice

moments improve the prediction error of the RCN model (in terms of RMSE) so that it fits nearly

perfectly. The RCC model appears badly misspecified; the additional moments improve the RMSE

signficantly but the MAD very little.

For I ≥ 4 consumers, the semi-parametric model performs as well or better than the RCN

model estimated from observational data alone (and much better than the RCC model with or

without the additional moments) in terms of both MAD and RMSE. The number of “observed”

rows L ∈ {6, 8, 10} does not have a signficant impact on the prediction error of the model, suggesting

that L = 6 rows is “enough” to explain the substitution patterns in the remaining J = 45−L rows

18When including L = {5, 6, 8, 10} rows, we use the same ordering of products and try to select the top product
from each category.
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of the matrix.19

We get a similar result in Figure 2 when we use the RCC model as the data generating process.

In this case the semi-parametric model substantially outperforms the RCN model. The addition of

the second-choice moments does little to improve the predictive power of the RCN model.

We calculate the “true” rank of the D(x, θ0) from the nested logit DGP to be G = 6 (the

number of nests) and the approximate rank (nuclear norm) to be 2.33. For the RCC DGP the

approximate rank 4.5. This helps explain why our semi-parametric approximation of rank I = 4 or

I = 5 performs so well—the underlying matrix has a low-rank structure which makes it amenable

to our approximation.

19Figure 1 does not report (or estimate) cases where the rank of the matrix I exceeds the number of observed rows
L.
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Figure 1: Out-of-sample fit for nested logit: Parametric and Semi-parametric Models
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Notes: The data generating process is a nested logit model with six categories (rank G = 6, nuclear norm 2.33).

Parametric models (Logit, RCC, and RCN) are fit on full sample T = 250 with or without additional moments

based on (five) observed rows of second choice matrix D.

Semi-parametric model (CMS) fit only on shares S(x, θ0) and L rows of second-choice matrix Dl,·(x, θ0).

Out of sample fit is now on remaining J − L rows where L ∈ {6, 8, 10}.
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Figure 2: Out-of-sample fit for RCC: Parametric and Semi-parametric Models
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Notes: The DGP is a random coefficients logit (σ0 = 3.52, σsalt = 1.00, σsugar = 1.8, σnuts = 0.38) with rank X,

nuclear norm 4.5.

Parametric models (Logit, RCN) are fit on full sample T = 250 with or without additional moments based on

(five) observed rows of second choice matrix D.

Semi-parametric model (CMS) fit only on shares S(x, θ0) and L rows of second-choice matrix Dl,·(x, θ0).

Out of sample fit is on remaining J − L rows where L ∈ {6, 8, 10}.
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4. U.S. Auto Industry Application

In this section, we estimate our model using data provided by Grieco et al. (2021) on the US

automobile industry in 2015. These data include both market share (first choice) data S, and

second-choice data second-choice data D from the 2015 MaritzCX survey. MaritzCX is an automo-

bile industry research and marketing firm that surveys recent car purchasers based on new vehicle

registrations. The survey includes a question about the cars that the 53,328 respondents considered

but did not purchase. We consider the first listed car as the purchaser’s second choice to construct

D. For market shares, S, we use the 2015 sales for all U.S. vehicles matched with models observed

in the survey data and a market size of 20,765,000 as per GMY’s methodology.

Our goal is to compare our predictions of D(θ) to those in GMY. The GMY model incorporates

elements of Berry et al. (1995), Petrin (2002), and Berry et al. (2004a), and represents the state-of-

the-art in terms of BLP-style demand estimation, and uses data from many years (not only 2015).

It includes demand, supply, and micro moments based on demographic information and the second-

choice data presented above. Consumer utility is determined by a linear index of car characteristics

(e.g. price, footprint, segment).20 It also accounts for year-to-year variation in the utility of the

outside good and average unobserved quality of new cars. Consumer heterogeneity is generated

by interacting household characteristics and unobserved preferences with car attributes, allowing

for different substitution patterns by demographics. GMY compute both first-choice probabilities

(market shares) st(θ) and second-choice shares conditional on the first choice Dt(θ) using this

consumer-choice model. The supply model assumes simultaneous multi-product pricing given a

constant marginal cost function using a Bertrand-Nash assumption.

To properly compare our model with GMY, we must first understand how the latter model

constructs micro-moments related to second-choice data. GMY measures correlations in car char-

acteristics between observed first and second choices from survey data and matches them using the

same correlations implied by their model (see Conlon and Gortmaker (2023)) for a description of

20A complete list of characteristics entering the utility function includes: price, footprint, horsepower, mpg, height,
curbweight, number of trims, years since last redesign and dummies for van, SUV, truck, luxury, sport, electric,
european brand, US brand, new release. Some of these characteristics are interacted with demographic variables such
as income, age, rural status and family size.
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these types of moments). This differs from our estimator, as GMY matches summary statistics

instead of the matrix of second-choice probabilities. Our model may have an unfair advantage in

that we are assessing performance on its ability to fit second-choice probabilities, while the GMY

model is estimating parameters on a much larger set of data while trying to fit additional moments.

Still, this serves as a useful benchmark, as we should think of GMY as the state-of-the-art and the

best one can hope to do with a BLP-type model.

4.1. Cross-validation exercise

We utilize a cross-validation method to determine the rank of our matrix completion estimator.

The 318 products (car models) are randomly split into 20 folds, and we estimate our model 20

times, leaving out one fold each time. To assess the out-of-sample fit on the omitted second-

choices
∥∥PΩ(D −D(θ))

∥∥, we compare the Mean Absolute Deviation (MAD) ℓ1 and Root Mean

Squared Error (RMSE) ℓ2 errors. In Figure 3, we present the performance of our model for various

rank choices and compare it to the second-choice probabilities estimated with the state-of-the-art

parametric model used in GMY.
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Figure 3: Out-of-sample fit on D for different rank I

Cross-validation exercise selects the model with lowest out-of-sample prediction error: I = 15

Our semiparametric model shows superior in-sample performance compared to its parametric

counterpart, even with a relatively low rank. Out-of-sample, our model outperforms the parametric

model starting from a rank of I = 20 for RMSE fit, and I = 10 for MAD fit. It is important to

remember here that the parametric model used in GMY employs a vast amount of data while our

estimator uses only second choices and aggregate sales for a single year. According to our cross-

validation exercise, our preferred specification is a rank of I = 90. In the following subsections, we

will present results based on estimating this specification, as well as I = 1 (logit) and I = 30 as it

could be a local minimum if the researcher were to stop the search at a lower rank than we did.

Figure 4 shows a comparison between our preferred specification and the data, with an additional

matrix (far right) displaying the error that remains from prediction. In the following plots, we adopt
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the visual convention that the product j removed corresponds to a column, and each cell represents

second-choice probabilities Dj→k. The blocks that show up on the diagonal of the matrix are

clusters of high substitution among products. They are organized in segments with respect to their

size, starting from convertibles (top left) to cargo vans (bottom right). This organization of the

data is purely visual and does not impair the performance of our estimator.

Second-Choice Data CMS (I=15) Predicted Diversion Prediction Error

Figure 4: Side-by-side comparison between data D, predicted second-choice probabilities D, and
absolute error ∥D −D∥

As is generally the case with image processing (another field that uses matrix completion methods), prediction

errors tend to occur along “edges” of the image: in our case, products for which substitution is high relative to

surrounding products.

4.2. Comparison of implied second-choice probabilities

Figure 5 presents a comparison between the second-choice survey data and the estimated second-

choice probabilities from three models: GMY, our preferred specification, and a logit model. Visu-

ally, our semiparametric model with a rank of I = 90 is the closest to the data used for estimation.

GMY does a good job of identifying “groups” of vehicles with strong substitution (visible as blocks

on the diagonal–mostly because it includes normally distributed random coefficients on product

categories such as: sedans, SUV’s, Pickup Trucks, CUV’s, etc.). One challenge for GMY (and most

parametric logit models) is that it produces logit-like substitution within each category where the

most popular SUV is the best substitute for other SUV’s (visually this appears as a gradient within

each block). At the same time, because of the logit error, it also predicts too much substitution
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to the most popular overall products such as the Camry, Accord, and F-150 even from different

groups. This phenomenon is also observed in other contexts such as the vending experimental data

(presented in the next section), although in this case, GMY does a significantly better job, in part

because the model has quite a few parameters, and categories do a good job at explaining substi-

tution. The main challenge of these parametric models is that while they over-predict substitution

to the field, they under-predict substitution to the closest substitutes.

Data GMY

CMS (I=15) CMS (I=30)

Figure 5: Estimated Second-Choice Probability Matrices

Visually, our preferred specification matches the sparsity patterns of the data quite closely, while lower rank

models and GMY tend to show “fat tails” in that second-choices off the diagonal are higher than in the data.

Our model is capable of rationalizing high second-choice probabilities within groups of highly

substitutable products and zero diversion with products outside the groups. To illustrate this fact,

we compare estimated second-choice probabilities from multiple estimators for three vehicles: the
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Honda Accord, the Ford F-Series (the best selling vehicle in the U.S.), and the Mercedes-Benz

Sprinter Van. The first vehicle displays relatively spread out second-choice probabilities to other

models in its category, while the second displays substitution concentrated between only a few

vehicles. Finally, the third vehicle has one substitute with two thirds of recorded substitution.

Tables 1, 2 and 3 show that our preferred specification is able to rationalize these three different

substitution patterns with a low error rate compared to the parametric model in GMY or a simple

logit model.

Model Raw Logit CMS I=15 CMS I=30 GMY

Subaru Legacy 10.27 0.7 1.57 6.71 1.3

Toyota Camry 9.1 0.69 1.41 5.8 9.48

Acura Tlx 6.07 0.6 0.86 0.84 0.46

Honda Civic 5.97 0.86 0.69 3.86 3.89

Mazda Mazda6 5.68 0.41 0.76 4.2 1.32

Volkswagen Passat 4.01 0.6 1.17 4.51 1.22

Nissan Altima 3.52 0.58 0.88 3.55 7.22

Hyundai Sonata 3.52 0.61 1.37 5.68 5.09

Volkswagen Jetta 3.33 0.82 1.36 5.36 1.48

Mazda Mazda3 2.15 1.26 0.84 3.54 1.49

Toyota Corolla 1.96 0.66 0.61 3.14 4.66

Table 1: Top Substitutes: Honda Accord

Model Raw Logit CMS I=15 CMS I=30 GMY

Ram Pickup 24.59 0.88 22.35 22.23 19.4

Gmc Sierra 20.29 0.61 22.17 21.92 17.27

Chevrolet Silverado 15.62 0.78 19.76 19.63 33.62

Toyota Tundra 12.98 0.55 12.67 12.79 2.29

Toyota Tacoma 6.31 0.76 2.36 3.13 2.83

Chevrolet Colorado 4.64 0.63 2.15 2.86 2.87

Gmc Canyon 2.3 0.3 1.04 1.38 1.02

Nissan Frontier 1.63 0.43 1.28 1.69 0.61

Jeep Wrangler 1.59 0.69 1.04 0.94 0.06

Nissan Titan 0.7 0.05 1.08 1.17 0.18

Ford Explorer 0.63 0.38 0.14 0.14 0.71

Table 2: Top Substitutes: Ford F-Series
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Model Raw Logit CMS I=15 CMS I=30 GMY

Ford Transit Wagon 66.67 0.58 33.57 51.72 0.04

Ram Promaster 16.67 0.08 2.22 0.0 1.76

Ford Transit Connect 8.33 0.66 25.54 0.04 0.01

Nissan Nv 8.33 0.47 24.35 30.18 6.52

Mini Cooper 0.0 0.5 0.0 0.0 0.0

Volkswagen Beetle Ii Cabrio 0.0 0.28 0.0 0.0 0.0

Audi A5 0.0 0.31 0.0 0.0 0.02

Mazda Mx-5 Miata 0.0 0.33 0.0 0.01 0.0

Audi S5 0.0 0.18 0.0 0.0 0.0

Porsche Boxster 0.0 0.18 0.0 0.01 0.0

Volkswagen Eos 0.0 0.06 0.0 0.0 0.0

Table 3: Top Substitutes: Mercedes-Benz Sprinter Van

Figure 6 presents a comparison of in-sample performance for various ranks using different fit

measures: RMSE, MAE, the fraction of correctly predicted top 10 substitutes, and the fraction

of correctly predicted pairwise comparisons. We selected the latter two measures because they

represent important features of the second-choice matrix D, although they are not directly targeted

by either class of models in estimation. The % Correct Top 10 fit measures how many top 10

substitutes (unranked) were correctly predicted (0/1) on average across products. The pairwise

comparisons ask for two substitutes k and k′ whether I[Djk > Djk′ ] is predicted correctly (0/1)

and averages across all (j, k, k′). As an example, consider second-choice probabilities for the Honda

Accord in Table 1: the Subaru Legacy dominates the Toyota Camry in the data, which is correctly

predicted by both CMS I = 30 and I = 90, but not by GMY nor the Logit model. The % Correct

Pairwise Fit is the average proportion of such correctly predicted pairwise comparisons across all

products. One challenge is for these comparisons is that because there are J = 318 products, for

many choices (k, k′) both may represent rarely chosen substitutes Dj→k ≈ 0.
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Figure 6: In-sample fit comparison across ranks

Our semiparametric model outperforms its parametric counterpart in all measures starting from relatively low

ranks (between 5 and 10). Note: the two bottom fit measures are explained in the previous paragraph.

Our model is able to produce these extreme patterns for a few reasons. One is that it tends to

produce highly sparse si vectors with no substitution to a large number of products at the individual

level. The second is that individual diversion ratios are Dj,k,i =
sik

1−sij
, so we can get extremely

high rates of substitution when for some individual i, there is a high value of both sij and sik (such

as in the Mercedes-Benz Sprinter Van example Table 3). This is particularly true if sij = 0 for

most of the other types, such that only a small number of types have non-trivial choice probabilties

for the Sprinter Van. However, our model still places some significant restrictions on substitution

patterns. In Table 1, we see that the Honda Accord is highly substitutable both the Toyota Camry

(Dj→k) and the Subaru Legacy (Dj→k′). For small values of I, this will imply and without strong
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substitution between Dk→j (ie: from Camry and Legacy to Accord) or Dk→k′ (between Legacy

and Camry). If this pattern doesn’t arise in the data, we can rationalize it by having one type

with high sij for Camry and Accord (but not Legacy) and another with high sij for Legacy and

Accord (but not Camry). As the rank I gets larger, it becomes easier to accomodate this kind of

behavior, however this may also be the source of “overfitting” the observed substitution patterns,

one advantage of the low-rank structure might be that the model is able to “learn” these kinds of

patterns.

5. Extensions

5.1. Multiple Product Removals

In some settings, we might have data on substitution patterns from multiple product removals. For

example, in the vending machine experiment described in this paper, two treatment arms removed

two products simultaneously: Snickers and M&M’s in one arm and Doritos and Cheetos in the

other. In this case we know don’t know the identity of the first choice j, only that it was from

some subset Jrem ⊂ J . We show in Appendix A.1 that the diversion ratio to remaining product k

from removing multiple products j ∈ Jrem with total choice probability: si,Jrem ≡
∑

j∈Jrem
sij has

a structure similar to (5), and is given by:

DJrem→k = P(chooses k ∈ J \ {Jrem} | chooses Jrem ⊂ J )

DJrem→k
=

I∑
i=1

πi ·
sik

1− si,Jrem

·
si,Jrem

sJrem

(14)

A similar scenario arises if the consumer is instead restricted in the set of their second-choice

options. For example, in the MaritzCX survey, consumers are required to list a second-choice

option (and are unable to list “no purchase” as their second-choice). In this case, we are interested

in the following probability, which we can compute under the model using an augmented “individual
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diversion ratio” Djk,i =
sik

1−si,Jrem
, while leaving the other terms unchanged:

Dj→k\{0} = P(chooses k ∈ J \ Jrem | chooses j ∈ J )

Dj→k\{0} =
I∑

i=1

πi ·
sik

1− si,Jrem

· sij
sj

. (15)

In the case of the MaritzCX suvey used in Section 4, the restricted set Jrem = {0, j}, where the

outside option is not available as a second-choice.

Conceptually neither of (14) and (15) is different from (5), and these represent minor modifica-

tions for the D matrix in (6). In fact, one could even combine the two modifications and consolidate

or restrict both the first- and second-choices. One tradeoff is that the more we consolidate first and

second-choices, the less information we have to inform our estimates. As an example, we might

know how many sedan buyers have a second-choice product that is a SUV, which would be less

informative than model level second-choice data.

5.2. Estimating Market Size

In most applications the number or share of individuals choosing the outside option q0 or S0 is

unobserved, but assumed to be known by the researcher. In practice this is often calibrated to

census or Current Population Survey (CPS) data on the number of individuals or households.21

In Backus et al. (2021), the market size is estimated by trying to capture foot traffic to stores by

projecting total category sales (breakfast cereal) on sales of other product categories (milk and

eggs) and taking the fitted values.

However, since we are using data from only a single market, we can treat the number of con-

sumers who are choosing the outside option as a free parameter and modify (6):

min
(S,π,q0,S)≥0

∥PΩ(D −D)∥ℓ2 + λ ∥S − Sπ∥ℓ2 with ∥π∥ℓ1 ≤ 1, ∥si∥ℓ1 ≤ 1. (16)

Sj =
qj

q0 +
∑

k∈J\{0} qk
.

If we are overidentified in the original problem (6), we may be able to estimate a single additional pa-

21See Berry et al. (1995); Nevo (2001) as examples.
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rameter q0 without much difficulty. Technically, we add J +1 pararameters for S and J constriants

in (16). The constraints for Sj are not linear but are very simple since
∂Sj

∂q0
= − qj

(q0+
∑

k∈J\{0} qk)2
.

5.3. Adding Parametric Restrictions

There may be cases where we are interested not only in substitution among existing products, but

also what might happen if we were to introduce a new product, or if prices or characteristics were

to change. In this case we might want to construct a prediction for D(x′) or S(x′) at some x′ ̸= x.

In this case having a parametric structure on characteristics like Vij(xj) = βixj + dj would be

helpful. We can simply impose an additional set of constraints on (6), and search over βi and dj

as well as πi and sij :

sij(x) =
eβixj+dj

1 +
∑

k e
βixk+dk

.

This creates some challenges: the bound rank(D) ≤ I may no longer be informative; for any fixed

I the fit of the model is likely to be worse. However, we’ve effectively reduced the number of free

parameters from (J + 1)× I to J + (K + 1)× I where dim(β) = K.

The advantage of these additional restrictions is that it enables us to test whether or not the

characteristics xj span the space of substitution patterns D. An obvious choice would be a non-

nested model comparison like Rivers and Vuong (2002) which compares the fit of the model with

and without parametric restrictions and adjusted for the degrees of freedom.
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5.4. Other Variation: Prices, Quality, and Characteristics

We could derive a similar result where instead of second-choice diversion, we consider diversion

with respect to an infinitesimal change in some characteristic (such as price) where
∂Vij

∂zj
= βz

i :
22

∂sj
∂zk

(x) =

I∑
i=1

βz
i · πi · sik(x) · (1[j = k]− sij(x)) (17)

Dz(x) = diag(sz)
−1 ·

I∑
i=1

πi · βz
i · si(x) · siT (x). (18)

There are three ways to view (18). The first is that in order to predict elements of Dz(x), we now

need an estimate of βz
i for each type i. This means that counterfactuals which depend on Dz(x) or

∂sj
∂zj

(x) are not identified from our simple estimator in (6) alone. The second is that if we observe

part or all of Dz(x), we can use this variation to estimate βz
i . The third is that if all individuals

agree on βz
i = βz, as in the case of the quality index ξj , then the expression simplifies substantially.

5.5. Multiple Markets

Our estimator in (6) is conditioned on a single set of observables x so that we observe aggregate

shares S(x) and some elements of D(x) to recover si(x) and πi. Implicitly, this means everything

is conditional on x. If we observed data from multiple markets t = 1, . . . , T with different xt, we

could either estimate separately market by market, or parameterize Vij(xt) and use the parametric

structure to pool parameters across markets.23

5.6. Identification and Inference

There are different ways to think about asymptotic inference in (6). One approach would be to

take the observed elements of PΩ → ∞ and implicitly J → ∞ and treat (6) as a GMM estimator.

This would be similar to the approach taken in Berry et al. (2004b).

A more practical approach might be to think about (6) as a minimum distance estimator where

22Here diag(sz)
−1 is a diagonal matrix where entries are given by

(
∂sj
∂zj

)−1

for a particular characteristic z. This

term row-normalizes the matrix so that
∑

j ̸=k Dkj = 1.
23The former is used in applications like hospital demand. The latter is effectively the identification approach in

much of the rest of the IO literature Berry et al. (1995); Nevo (2001), etc.
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the observed second-choice probabilities are themselves estimated from some sample. This would

be the case if we were using a survey of n individuals to estimate the second-choice probabilities.

In that case we would need:
∥∥∥Dn

jk −D0
jk

∥∥∥ p→ 0 (the sample estimates converge in probability to the

true population second-choice probabilities.)

The standard conditions for minimum distance estimators are straightforward to verify for our

constrained least squares problem. Compactness of θ ∈ Θ would be guaranteed by the constraints

in (6), all parameters are constrained to the unit interval. We provide the derivatives
∂Djk

∂θ in

Appendix A.3. For the derivatives to be bounded we need that si is non-degenerate and has at

least two nonzero elements for each i. The objective in (6) is quadratic and all other constraints

are linear or quadratic in parameters, which should guarantee that Q(θ) is twice continuously

differentiable with bounded derivatives.

Identification of the model in (6) is (likely) straightforward so long the rank of the observed

D matrix is sufficiently large: rank(D) ≫ I. This guarantees that the objective function is never

equal to zero. We must also have more observed elements of D than unknowns (J +1) · I. Because

Djk(θ) is a non-convex function of the parameters, at best we can only hope to establish local

identification at some values of (S, π). We need a rank condition on the Jacobian (with respect to

parameters θ = [si, πi]) for there to be a unique solution in the least-squares sense. A necessary

though not sufficient condition is that the vectors si be linearly independent and πi > 0 strictly for

all i. We provide the derivatives
∂Djk

∂θ in Appendix A.3.

The easiest way to construct confidence intervals for Djk(θ̂) (or other outputs) is to bootstrap

the underlying survey data used to construct Dn and re-estimate the model in (6). Even on

relatively large problems, estimation only takes a few seconds in our application.

[Is this kind of informal sketch useful at all?]

6. Conclusion

We develop a semi-parametric estimator of the full matrix of diversion ratios based on matrix com-

pletion methods commonly used in computer science. Our approach uses data on aggregate market

shares and (potentially partially observed) second-choice diversion ratios, requires no information
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on product characteristics, and is computationally easy to estimate. We demonstrate the approach

in Monte Carlo simulations and compare it to commonly-used but potentially misspecified para-

metric models, and we apply the method to the US automobile market, for which we have diversion

on all inside goods in a setting with more than 300 products.
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Appendices

A. Theoretical Results

A.1. Multiple Product Removals

From Conlon and Mortimer (2021a), we know that, in a random coefficients logit demand frame-
work, diversion from good j to good k when j is no longer available is:

Djk =
sk(J , x)− sk(J \j, x)

sj(J , x)
= − 1

sj(J , x)

∫
sij(J , x)sik(J , x)

(1− sij(J , x))

For clarity, we use the subscript \j as an equivalent for writing (J \j) and we remove the x. We
can rewrite the previous expression to get the share of k when j is not available:

sk\j = sk +

∫
sijsik

(1− sij)
(A1)

In addition, we know that for each individual type within the mixed logit model, diversion is
written as:

Dijk =
sik − sik\j

sij
= − sik

(1− sij)

which we can rewrite to find individual i’s share of k when j is not available:

sik\j = sik +
siksij

(1− sij)
= sik ·

(
1 +

sij
(1− sij)

)
=

sik
(1− sij)

(A2)

For the multiple product removals case, we want to prove that the individual share of good k
when all products j ∈ Jrem are removed is:

sik\Jrem
=

sik
1−

∑
j∈Jrem

sij

We can proceed by induction. Equation (2) is the our first case, when removing only one product.
Assume that after removing p products we have

sik\1,...,p =
sik

1−
∑p

j=1 sij
,

then when we remove p+ 1 products, we have

sik\1,...,p+1 =
sik\1,...,p

1− sip+1\1,...,p
=

sik
1−

∑p
j=1 sij

· 1

1− sip+1

1−
∑p

j=1 sij

=
sik

1−
∑p

j=1 sij
·
1−

∑p
j=1 sij

1−
∑p+1

j=1 sij

=
sik

1−
∑p+1

j=1 sij
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Therfeore, for a particular instance of IIA logit i, we have:

sik\Jrem
=

sik
1−

∑
j∈Jrem

sij

For the mixed logit, we want to prove that:

sk\Jrem
= sk +

∫
sik ·

∑
j∈Jrem

sij

1−
∑

j∈Jrem
sij

We already know that this is the case for a single removed product, as expressed in (1). And,
if after removing p goods we have:

s0\1,...,p = sk +

∫
sik ·

∑p
j=1 sij

1−
∑p

j=1 sij

then for p+ 1, we have

sk\1,...,p+1 = sk\1,...,p +

∫
sik\1,...,p · sip+1\1,...,p

1− sip+1\1,...,p

= sk +

∫
sik ·

∑p
j=1 sij

1−
∑p

j=1 sij
+

∫ sik
1−

∑p
j=1 sij

· sip+1

1−
∑p

j=1 sij

1− sip+1

1−
∑p

j=1 sij

= sk +

∫
sik ·

∑p
j=1 sij

1−
∑p

j=1 sij
+

∫
sik ·

sip+1

(1−
∑p

j=1 sij)(1−
∑p+1

k=1 sik)

= sk +

∫
sik ·

[ ∑p
j=1 sij

1−
∑p

j=1 sij
+

sip+1

(1−
∑p

j=1 sij)(1−
∑p+1

k=1 sik)

]

= sk +

∫
sik ·

[
(1−

∑p+1
k=1 sik) · (

∑p
j=1 sij) + sip+1

(1−
∑p

j=1 sij)(1−
∑p+1

k=1 sik)

]

= sk +

∫
sik ·

[
(1−

∑p
k=1 sik) · (

∑p
j=1 sij) + (1−

∑p
k=1 sik) · sip+1

(1−
∑p

j=1 sij)(1−
∑p+1

k=1 sik)

]

= sk +

∫
sik ·

[ ∑p+1
k=1 sik

(1−
∑p+1

k=1 sik)

]

Therefore,

sk\Jrem
= sk +

∫
sik ·

∑
j∈Jrem

sij

1−
∑

j∈Jrem
sij

and we can write diversion from multiple products removed to k as:

DJrem,k =
sk\Jrem

− sk∑
j∈Jrem

sj
=

1∑
j∈Jrem

sj

∫
sik
∑

j∈Jrem
sij

1−
∑

j∈Jrem
sij
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A.2. Nested Logit Details

We use the Cardell (1997); Berry (1994) parameterization of the nested logit model. (This is not
the same as the Train (2009); McFadden (1978) version).

A consumer i purchasing product j in a market where it is available obtains utility given by:

uij = δj + ζig(ρ) + (1− ρ)εij

where δj and ρ are parameters, εij is i.i.d. Type-I Extreme-Value and ζig is the idiosyncratic nest
preference, such that ζig(ρ) + (1− ρ)εij is also extreme value. Thus, if we denote Jg as the set of
products in nest g, the logit inclusive value IVg for nest g is given by:

IVg =
∑
k∈Jg

exp

(
δk

1− ρ

)

The choice probabilities can be written as the product of the logit for choice j conditional on
category choice g and the logit probability of choosing category g:

sj|g =
exp

(
δj
1−ρ

)
IVg

, sg =
IV

(1−ρ)
g∑

g′ IV
(1−ρ)
g′

sj = sj|g · sg.

Following the results in the appendix of Conlon and Mortimer (2021a), and defining Z(ρ, sg) =
[ρ+ (1− ρ)sg] ∈ (0, 1], we get two formulas for diversion from product j to product k:

(Same Nest g:)Djk =
sk|g

Z−1(ρ, sg)− sj|g

(Different Nests:)Djk =
sk · (1− ρ)

1− Z(ρ, sg) · sj|g
.

It is helpful to define the J × 1 vector s|g as having entries sj|g if j is a member of nest g and 0 if
it is not. This allows us to write the transposed diversion matrix in terms of:

DT
cross =

G∑
g=1

(1− ρ) s ·
[

Z−1(ρ, sg)

Z−1(ρ, sg)− s|g

]T

DT
same =

G∑
g=1

s|g ·
[

1

Z−1(ρ, sg)− s|g

]T
.

We can combine both so that:

DT =
G∑

g=1

[
(1− ρ)Z−1(ρ, sg) s+ s|g

]
·
[

1

Z−1(ρ, sg)− s|g

]T
Because the term inside the summation can be written as the product of two vectors this diversion
matrix will have at most rank G, the number of nests.
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A.3. Jacobian

Our objective in (6) is Q(θ) = ∥PΩ(D −D)∥ℓ2 =
∑

(j,k)∈OBS (Djk −Djk)
2. We can treat Sπ = s

as a constraint that is linear in parameters. Likewise ∥(S − s)∥ℓ2 is straightforward so we focus on
the second-choices. We set θ = [si, πi, s]. We can write the Jacobian as :

∂ Q(θ)

∂ θ
=

∑
(j,k)∈OBS

2 · (Djk −Djk)
∂ Djk

∂ θ

We can look at this element-by-element for j ̸= k ̸= l:

∂ Djk

∂ sil
= 0,

∂ Djk

∂ sk
= 0

∂ Djk

∂ sik
=

I∑
i=1

πi
sj

· sij
1− sij

=
I∑

i=1

πi ·Djk,i ·
1

sik

∂ Djk

∂ sij
=

I∑
i=1

πi
sj

· sik
(1− sij)2

=

I∑
i=1

πi ·Djk,i ·
1

sij(1− sij)

∂ Djk

∂ sj
=

I∑
i=1

−πi
s2j

· sik sij
1− sij

= − 1

sj

I∑
i=1

πi ·Djk,i

∂ Djk

∂ πi
=

sij
sj

· sik
1− sij

= Djk,i

Each of these derivatives are bounded because (πi, sij , sj) ∈ [0, 1). Since we expect sj > 0 from the
data, the only risk is that sij = 1 (sparsity sij = 0 does not cause any issues). In this case it is
sufficient that Djk > 0 for all j and at least one k so that si has at least two nonzero elements.
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