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Motivation



Fundamental Issue with Differentiated Products De

The too-many-parameters problem: a complete substitution matrix has J? parameters, but aggregate
data have only J observations. In order to predict substitution, we need to restrict consumers’ choice
problem (reduce dimensionality). Two options:

1. In product space, impose structure on the form of the underlying utility functions

Ingje = v + Y ok Inpre + €
k

» Examples: log —log or AIDS (Deaton and Muellbauer (1980 AER))
» Often with multi-level structure so that a;i = 0 for certain pairs.

2. In characteristic space, assume substitution patterns are functions of product characteristics

U5 = ﬁix]‘ + {j + €i5-
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Typical parametric approach in characteristic space

Mixed Logit: Explain substitution patterns using observed characteristics

» Often assume independent normal RC
» Two products with similar 1 and high substitution — larger o;.

» Two products with similar o and low substitution — smaller 5.
McFadden and Train (2000) show a mixed logit u;; = B;x; + ;5 is fully flexible

1. This depends on f(3;) heterogeneity being nonparametric

2. And a sufficient set of characteristics X to explain substitution patterns.

Much work on (1), less work on (2).
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Motivation #1: Challenges of Parametric Demand Estimation

Even the most flexible and data-rich random-coefficients models suffer from three main deficiencies:

1. Never quite enough substitution to best substitutes
2. Everything looks a bit too much like plain logit (substitution proportional to share)

3. Substitution patterns are only as good as your characteristics — if you want extreme substitution
patterns you need extreme characteristics.
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Motivation #2: What i measure of substitution?

For competition policy enforcement:

» Agencies may have (possibly limited) data on substitution, but not much else

» Second-choice surveys (e.g., Sainsbury’s/Asda, Microsoft/Activision)
» Customer switching or win/loss data (e.g., cell phone companies).
» Natural or field experiments (hospital closures; product removals)

» These may not be the objects we want to use as substitution patterns.

» Often we want to understand ceteris paribus responses to small changes in price.

Can we still use the information from the wrong experiment in a disciplined way?
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Today’s Paper

Can we construct a low-rank approximation to substitution patterns in product space?

» Idea: avoid the too-many-problem by directly restricting the rank of substitution matrix
» Trick: re-cast substitution in terms of second-choice probabilities

» We show this leads to a convenient semi-parametric representation.
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When might we want to do this?

» Product characteristics do not accurately capture substitution across products.
» We lack sufficient variation in prices, other covariates, to estimate demand system.

» We need to estimate substitution patterns across all products but have data on only a subset:

» shares of cell phone providers, but number porting/win-loss data for a subset (merging parties)

» second-choice surveys (UK CMA: Sainsbury’s/Asda, Microsoft/Activision, Amazon/Deliveroo)

» aggregate market shares and a subset of second-choice data (microBLP (2004); Grieco, Murry,
Yurukoglou (2024)).
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Example: Cell Phone Merger

Suppose we observe some aggregate shares S =[Sy, . ..
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Example of Second-Choice Survey Data, 318 Cars and Light Trucks

Second-Choice Data




Low Rank Approximations: Image Compression

Image of Camille Jordan (1838-1922)

Input Approximation Approximation error

Spectrum of singular values

A~ Uspex2s - 225%25 * Va5x266

Image Compression Demo
Matrix Completion (i.e., the Netflix Prize)
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https://www.youtube.com/watch?v=pAiVb7gWUrM
https://timbaumann.info/svd-image-compression-demo/
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1

Review of Diversion Ratios




The diversion ratio is one of the best ways we have to measure competition between products.

» Raise the price of product j and count the number of consumers who leave

» The diversion ratio D;_,}, is the fraction of leavers who switch to the substitute k.

v

A higher value of D;_,; indicates closer substitutes.

Useful because it arises in the multi-product Bertrand FOC:

v

pj (1+1/ej5(p)) = ¢ + Z (Pk — k) - Dj—k(P).
_—

Marginal Revenue eI\
» D, — Oar /| 94;
i—=k = 3p;/ | op; |
. s .
» Can also write as Dj_,, = ‘e’f’_‘ . Z—-;
73
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Diversion as a Treatment Effect (Conlon Mortimer RJE 2021)

Diversion Ratio = fraction of consumers who switch from purchasing a product j to purchasing a
substitute & (following an increase in the price of j)
Treatment not purchasing product j
Outcome fraction of consumers who switch from j — k.

Compliers consumers who would have purchased at z; but do not purchase at z;

This admits a Wald estimator:

Elgx|Z = 2] — E[qx|Z = 2]

D._, =
=k (%) Elg,1Z = ] — Elg;|Z = 2]
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A LATE Theorem (Conlon Mortimer RJE 2021)

We also showed that most discrete-choice models yield the following representation:

sij(2j, @) — sij(2}, @)

Sj (2.7'7 l‘) 5 (ng x)

/
Zj—z;

D’ ) = J ’ Dj_kq(x) wi(Zj,Z;—,fL') dF; with 'wi(zj,z;, ) =

» Different interventions z; — z; (prices, quality, characteristics, assortment) give different weights
wi(zj, 2}, ) and thus different local average diversion ratios.

» Individual Diversion Ratios D;_, ;(x) don't vary with the intervention
(determined only by how i ranks 2nd and 3rd choices).

» That paper establishes the decomposition above and derives some properties.
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A Special Case: Second Choices and Mixed Logit

If the underlying model is (any) mixed logit then:

Djoki =

And let dF; = m; be weight on each type i (Monte Carlo/Quadrature/etc):

I

Sik T Sij
Djk =), A
1-— Sij Sj

i=1

Different interventions give different weights (but don't change individual D,_,y ;).
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w;;'s, RC Logit, Other Interventions

Wi j (m)OC
second-choice data sij(x)
price change az sij(2)(1 = s45(x)) - |l
characteristic change Ci] sij(@)(L = s45(x)) - | Bil
small quality change 2 si(x) (1 — s5(x))

J
finite price change wl(p7,pj, )
finite quality change w;(&;, &}, x)
willingness to pay (WT )

|85 (P}, ) — sij(ps, @)
|si5(&5, @) . ?z‘j(fja z)|
[ovs \l']sw(ﬂf)
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Data and the Problem of Rank
Reduction



How does one measure diversion?

o=

From a parametric model: estimate demand and compute [ggfl (p)]_1 %’;’(p)

Farrell Shapiro (2011) hoped for info gathered “in an email” or “normal course of business”
From observed “Win-Loss" data (slightly different weights)

Randomized choice sets

» Chris and | did this in vending machines.
» Many examples of online search results/product listings

From surveys of second choices (e.g. stated preference)
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Consumers make discrete choices from set 7 and we observe market shares and select second-choice
probabilities

S; = P(chooses j € )
Dj_ = P(chooses k € J\{j} | chooses j € 7)

We observe the set of (j, k) elements in D which we label Py and its complement P

Wrinkle: We observe data only from a single market.
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Example of Second-Choice D,_,;, 318 Cars and Light Trucks, MaritzCX

Second-Choice Data




Back to rank reduction

Consider a low-rank approximation to substitution patterns using data on second choices.

» Limit the rank of D directly in product space instead of controlling complexity with product
characteristics and parametric restrictions on random coefficients.

» Allow for sparsity in individual shares and substitution patterns, with possibility of generating
extreme patterns for top substitutes if necessary.

» If A~ B and B ~ C then either A ~ C or we need to increase the rank!
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Setting up the Estimator



Definitions: First Choices

Utility is given by semi-parametric logit; €;; is Type | extreme value u;; = Vij + €45
Conditional choice probabilities (s;;):

eVii
V..
Zj’e:f e

Unconditional choice probabilities (s;); integrate out over distribution of Vj;:

]P’(uij > Ugjrs for all ] # j/ | Vi) = = Sij(vi).

I
]P’(uij > Ugjrs for all ] # ]/) = fsij(Vi) f(Vl) oV ~ Z T Sij(Vi) = 5.

=1

» P(V; =v;) = m; so that m; = 0 and Zle m; = 1 (so that 7 constitutes a valid probability measure) for

» Let S be a dim(J) x I matrix with column vectors s; — We can write s = S.
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Definitions: Second Choices

For any (semiparametric) mixture of logits we can write the probability that individual ¢ chooses k as
their second choice given that j is their first choice as:

Dj_.;, = P( chooses k € J\{j} | chooses j e [J)
I
Z L 5ij
= 1 — s” 5;

It is convenient to interpret D;_,j as the (j, k)th entry in the second-choice matrix D(S, 7).
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Second-Choice Matrix

» Individual i's share for each choice given by s; = [s0, Si1, .-, Sig]-

» Aggregate shares by 25:1 T - S = S.
T
» The matrix of individual diversion ratios is given by D; =s; - [7(1_15‘)] .

We write the (J + 1) x (J + 1) matrix of second-choice probabilities as:
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Second-Choice Matrix: Continued

Under relatively general conditions, second-choice probabilities can be written as:

|
D = diag(s Zm Si [— e —]

» Each individual diversion ratio is of rank one since it is the outer product of s; with itself (and
some diagonal “weights").
» The (unrestricted) matrix of diversion ratios D is (J + 1) x (J + 1).

» Logit restricts D to be of rank one. Nested logit of rank < G (the number of non-singleton
nests). Mixed logit to rank(D) < I (but bound is likely uninformative).
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Our Semiparametric Problem

Fix rank(D(S, 7)) = I, and for each choice of I solve:

Jnin [Pa(D = D(S.m)l,, + AS =S, with |z, <1, [sil,, <1.

v

Goal: estimate s; (choice probabilities) and corresponding weights 7; (Finite Mixture)
» Not convex, but not very difficult either.
» Constraints: Choice probabilities s;; sum to one, type weights 7m; sum to one.
» (1 constraints lead to sparsity.
» Idea: Control the rank by limiting I directly
» Use cross validation to select # of types I and Lagrange multiplier \.

» Matrix completion: We can construct estimates of D(S, ) including elements of Pg.
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Aside on Matrix Algebra

» Absent any constraints from discrete choice (and first-choice probabilities) we know the solution
is similar to the Camille Jordan problem

» Take the first I singular values from the SVD (as in Camille Jordan example)

» The Nuclear Norm of a matrix |D| is the sum of its singular values and provides a “continuous
approximation” to its rank.

» Measure how complicated our second-choice data/parametric models are.
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Comparisons




Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

4

71}1;1(1) ( Zm Sij ﬁz ) subject to Zm =1
~ eBi"L'J'

14+ ePi;

v

Draw j3; ~ G(3;) from a prior distribution.

v

Solved in characteristic space with a semi-parametric form for f(/3;).

v

Often produces very sparse models 7; = 0 (for 950/1000 simulated consumers).

v

Data requirement: characteristics that vary across markets.

Fix grid of Bz (and thus §;;); search over m;.

v

See Heiss, Hetzenecker, Osterhaus (JoE 2022).
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Comparison: Raval et al. (2017, 2020)

Cut data into bins (zip, income, age, gender)

v

v

Observe shares (hospital demand) within each bin s,;) ;

v

A separate plain logit for each bin with only {; as the common parameter.

eBomi+E;

S IO
9(4),J 1+ Zj/ oBatji+E;1

L =543,

Dj_ .y, =

v

Use second choices from hospital closures (natural disasters) to compare models.

v

Requires individual data grouped into bins, plus characteristics.

» Fix m;'s, search for 3, (and thus s,;)).
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Comparison: Latent Class Logit (Greene and Hensher 2003)

Most similar to what we're doing conceptually.

» Estimate separate 3; for each class.
» Estimate proportion of each class ;.

» Estimating finite mixtures is tricky and usually requires EM.

I Biwij+&;
e J J
si(m, B) = ;lm : (szem)

» We work in product space (no need for characteristics), using the summing-up constraints to

enforce that the model is consistent with discrete choice.
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Monte Carlo




Generating Data

» Fit (i) nested logit, (i) RC logit to data on vending machines (Conlon and Mortimer JPE, 2021).
» Generate fake sales and second-choices from those parameter estimates.

» J = 45 products; T' = 250 markets; with 30 randomly selected products in each.
Market size M = 1000 per market. Nesting parameter is p = 0.25.
» Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.

» Estimate a variety of misspecified parametric models: RC on nest dummies, RC on characteristics
(Salt, Sugar, Nut Content), and our semiparametric estimator.

» Include m « J columns of D;_,;, as extra moments.
» Compare out-of-sample predicted second-choice probabilities.
> MAD: Median (|D;—x — Dj.x]) for (j, k) € Py (Validation).

» RMSE: \/% Y wery I Dimk = Dimail?
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Monte Carlo: DGP is Nested Logit

Cross-validation Results - Nested Logit DGP

RMSE MAD
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Monte Carlo: DGP is RC on chars (Interpolation!)

Cross-validation Results - RC Logit DGP

RMSE MAD
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Application to Autos Data




Description of Autos Data

v

Subset of data from Grieco, Murry and Yurukoglu (QJE 2023).

Focus on one year of sales from 2015

v

» Aggregate sales observed at the model-year level from Ward's Automotive.
» Second choices from MaritzCX survey (53,328 purchases)
» In total, J = 318 products.

Same Goal: Predict unobserved second-choice data without characteristics.

v

v

How: Split sample into Py and Py
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ritzCX Survey data (318 Cars and Light Trucks)

Second-Choice Data




Cross Validation: Model Selection

Unweighted RMSE Unweighted MAD
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In-Sample Performance

RMSE

Unweighted RMSE

Unweighted MAD
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Analysis of Consumer Weights

Consumer Weights Concentration
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Comparison of Implied Diversion

Data GMY

e )

CMS (I=15) CMS (1=30)
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Profiles of Types (Rank 15)

Convertible:
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Wagon:
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Top Substitutes: Ford F-Series

Model Raw Logit CMS I=15 CMS I1=30 GMY

Ram Pickup 2459  0.88 21.46 22,23 19.40

Gmc Sierra 20.29  0.61 14.97 21.92 17.27
Chevrolet Silverado  15.62 0.78 13.41 19.63 33.62
Toyota Tundra 1298  0.55 16.32 12.79 2.29
Toyota Tacoma  6.31 0.76 3.39 3.13 2.83
Chevrolet Colorado  4.64 0.63 3.22 2.86 2.87
Gmc Canyon 230  0.30 0.76 1.38 1.02
Nissan Frontier ~ 1.63  0.43 0.92 1.69 0.61
Jeep Wrangler  1.59 0.69 1.33 0.94 0.06
Nissan Titan  0.70 0.05 1.18 1.17 0.18

Ford Explorer ~ 0.63  0.38 0.16 0.14 0.71

38/57



Top Substitutes: Honda Odyssey

Model Raw Logit CMS I=15 CMS I=30 GMY

Toyota Sienna  44.51 0.50 41.02 41.43 28.34
Chrysler Town & Country 11.27 0.44 13.70 13.66 6.90
Dodge Caravan  8.67  0.61 12.11 12.90 7.04
Kia Sedona  8.38 0.18 7.22 7.22 7.59
Mazda Mazda5  2.02  0.19 0.07 0.00 0.01
Nissan Quest 2.02 0.16 3.15 2.56 2.43
Honda Pilot  1.73  0.29 1.40 1.64 0.59
Chevrolet Traverse 1.73 1.33 1.50 1.29 0.18
Toyota Highlander 1.45 1.17 1.30 1.24 0.53
Gmc Acadia 1.16  0.63 1.36 1.36 0.15

Ford Flex 1.16  0.10 0.86 1.02 0.03

39/57



Top Substitutes: Mercedes-Benz Sprinter Van

Model Raw Logit CMS I=15 CMS I=30 GMY

Ford Transit Wagon 66.67 0.58 18.18 51.72 0.04
Ram Promaster 16.67 0.08 0.00 0.00 1.76

Ford Transit Connect  8.33 0.66 22.12 0.04 0.01
Nissan Nv  8.33 0.47 15.75 30.18 6.52

Mini Cooper  0.00 0.50 0.00 0.00 0.00
Volkswagen Beetle li Cabrio  0.00 0.28 0.02 0.00 0.00
Audi A5 0.00 0.31 0.04 0.00 0.02

Mazda Mx-5 Miata  0.00 0.33 0.04 0.01 0.00
Audi S5  0.00 0.18 0.04 0.00 0.00

Porsche Boxster ~ 0.00 0.18 0.80 0.01 0.00
Volkswagen Eos ~ 0.00  0.06 0.00 0.00 0.00
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» So far: Estimation of S and 5;;, as well as 7.
» Challenge: Cannot directly calculate price elasticities and consumer welfare.

» Solution: Follow a two-stage approach inspired by existing literature.

» Second Stage: Recovery of price sensitivity coefficients.

» Assumption: Utility u;; = Vij + €;5 with €55 as an |[ID Type | extreme value error term.
» Key Equation:

1H§7;'—1I1§Z‘ If§2>0,
Vig—Vio=4 70
n.a. if §” = 0.

» Then either calibrate 87 = %‘;i?' using (1) observed own-price elasticities or
J

(2) observed price-cost margins.
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Own-Price Elasticity Cal

» Approach 1: Calibrate ¥ = aa‘;i? using observed own-price elasticities.
J

» Sources of observed elasticities: Quasi-experiment, other studies, or simpler demand systems on
observational data.

» Minimum Distance Estimator:

» Requirements:
» Observe at least as many elasticities as types .
» Simplifies if 7 = 87, where a single or average elasticity identifies 5”.
» Empirical Example: Estimating 37 using own-elasticities estimated from GMY.
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Implied Price Coefficients

Estimated Price coefficients (CMS I=15),
Mean=-0.17, std=0.03
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Model Fit

Estimated Own-Price Elasticities (CMS I=15),
RMSE=0.96, MAD=0.57, Corr=0.94
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Price-Cost Margin Calibration

» Approach 2: Calibrate ¥ = 5 17 using observed price-cost margins.
pj

op
» lIdeally at product or firm level.

v

Construct A matrix of demand derivatives, H ownership matrix.

o (o))

Minimum Distance Estimator:

v

P-C margin is then:

v

. . p AN oA
é?glo HC]J c] (62 ’Hv Sa 77)

123

v

Empirical Example: Estimating 37 using price-cost margins estimates from GMY.
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Implied Price Coefficients

Estimated Price coefficients (CMS I=15),
Mean=-0.16, std=0.09
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Model Fit

CMS

Estimated Price-cost margins (CMS I=15),

RMSE=0.03, MAD=0.02, Corr=0.89
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Vending Example




Product Removal Experiments

Described in Conlon, Mortimer, Sarkis, Rodriguez-Valdenegro (2023)
Used in Conlon Mortimer (JPE 2021), not (AEJM 2013)

Remove best sellers by category:

» Chocolate: Snickers and M&M Peanut
» Cookie: Animal Cracker and Famous Amos

v

v

v

» Salty: Doritos and Cheetos

66 Vending machines in Downtown Chicago office buildings (around 10,000 treated individuals

v

per arm)
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Snickers and M&M Peanut

Product S; Dj.r Logit RCC RCN CMS(I=2) CMS(I=3)

Outside Good  30.12  36.33 24.02 24.64 27.99 34.78 33.62

Twix Caramel 2.42 11.64 2.56 2.93 5.31 8.56 11.97

M&M Milk Chocolate 1.16 8.33 2.09 2.63 4.43 5.73 7.10
Choc Mars (Con) 1.11 6.79 1.76 2.11 3.68 1.71 2.22

Reeses Peanut Butter Cups 0.59 6.57 1.84 2.78 3.83 3.48 5.12
Butterfinger 0.50 5.22 1.22 1.71 2.49 3.75 4.20

Raisinets 1.60 3.28 1.67 2.12 3.48 2.38 2.92

Nonchoc Other (Con) 0.78 2.63 1.45 1.81 1.33 0.69 0.74
Choc Chip Famous Amos 2.05 2.48 1.74 1.79 1.23 0.00 0.21
Choc Herhsey (Con) 0.22 2.16 1.37 1.69 2.98 1.85 2.15
Planters (Con) 1.92 2.02 2.30 4.16 1.52 4.10 5.13
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Individual Estimates

1=1 1=2 1=3 1=4
Weight on individual:| 100.0% | 812% 18.8% [62.8% 314% 5.8% [735% 261% 24% 0.02%
Product LogitSj| i=1 i=1 i=2 i=3 | i=1
snyders(Con)  221[ o070 o064 o070] 000 o000 217| 000 000 023
Cheetos 252 050[ 000 o000 026 025 o080| o3 000  0.00 Model/Rank: 1=3 1=4
Ruffles(Con) 098 1.88 098  482| 000 253 484 0.03 254 0.00 | 100.0% | 81.2% | 18.8% | 62.8% | 31.4% | 5.8% | 73.5% | 241% | 24% |0.02%
Dorito Nacho 205 098 090 122 000 000 000| 000 000  0.00 P=1 Ji=1lim2 Ji=1 |i=2 [i=3]i=1[i=2]i=3 [i=¢
Rold Gold (Con) 094 1.86| 235 o000 250 013 140| o065 014 4kl $x 042] 048] 0.00] 003 000| 036] 000 043| 000 047
Baked (Con)  199| 208| 249 o0s0| 136 o000/ 394] 235 000 043 g § Nonchoc Other (Con) ~ 1.06]  041] 059 000| 065 000 032| 000 041 000 154
Salty Other (Con) 278 022 029 0.0 005 000 059 0.00 000 030 ] Twizzlers. 1.66 116 120 0.86 090 059 n 196 14 0.66  0.00
9 Sun Chip 1.81 476| 0.00 519 0.09 571 BRERS]  0.00 ZAnimal Cracker 1.90 0.29 0.35 014 033 039 0.00 016 0.00 0.00 0.00
g Cheez-It 177, 147 106 267| 000 091 390| 000 400 093 043 CC Fam Amos 158 157| 0.0 366 023 0.00
g Jays (Con) 148 017 023 0.00] 004 0.00 047| 0.00 057 000 024 2 Ruger Wafer (con) 1.60 0.54| 068 0.00 046 000 094 0.00 1.07  0.00 131
3 e 203| 141] 128 165 000 o000 4ss| oool 470 o000 o004 H Grandmas CC 15[ o84 o046 207| 034 221 089| 047 092 225 005
FritoLay (Con) 149 17| 157 194 015 036 449| 053 450 045 034 = Rasbry Knotts 0.68 10| 047 318 045 289 112 076 119 287 0.00
Smartfood 1.51 0.56 0.67 0.00 0.31 016 1.02| o0.00 117 018 0.69 Choc Fam Amos 091 135 1.09 212 147 265 038 119 0.52 263 135
lays 45| o054| 0s6 o0m| 000 o000 162 000 168 000 030 Nabisco(Con) 123|144 122 204] 124 228 an| 099 120 221 144
Cheetos Flamin  096|  055| 050 055 000 000 183 000 192 003 000 z pop-Tarts(Con)  242| 027| 039 000 034 000 036] 000 046 000 087
poritoBlazin  145|  147| 0.01[647| 000[ 577 182| 000 206/ 562 0.0 g RiceKTreats 085 225| 264 o080|] 206 016 322| 278 303 024 159
Popcorn (Con) 206/ 051 063 000| 061 033 034) 022 054 036 080 Nature Valley (Con) 213, 142| 147 1.02] 042 000 354| 163 322 0.00 0.00
Ritz Bits 0.51 016 022 000 017 000 023] 000 032 003 026 Planters (Con) 163 as| 35 - 439 - 279 a:m 279 - 310
M&M Peanut 321|478 646 0.00 000 118 000 000 000 H KarNuts (Con) 165| 125| 168 000| 171 000 105| 251 087 001 036
Snickers 353  6.08 0.00 070 0.00 000 011 013 5 Farleys Fruit Snax 099] 058| 057 045 004 000 169] 016 169 000 0.08
5 Twix Caramel  229| 519|732 0.00 JRIKE] 000 0.00| 404 000 0.00 Cherry Fruitsnax 052 009 014 000| 005 000 025 000 030 000 012
3 Raisinets 147 147| 203 000| 267 000 021| 27 003 005 206 cliffcon) 391 103 129 o000| 130 o051 o067| o062 o082 o048 203
g M&M Milk Choc 1.80 3.63 490 0.00 647 0.00 0.67 531 036 0.04 7.24) Outside Good 2534 28.58| 29.75 22.86| 2743 1542 33.28| 27.87 3277 1506 29.27
g Choc Mars (Con) 213|  103| 146 000 203 000 01| 000 031 000 469
3 Reeses PB Cups 1.68 1.62 298 0.00| 468 000 036 295 025 0.00 ﬂ
Butterfinger 110 272| 321 oso| 369 113 17| 206 173 116 562
Choc Herhsey (Con)  1.22|  287| 158[0720| 164/ 592 292 o091 323/ 5@ 253




Extensions and Conclusion




Extensions

» What about (exogenous) price or quality changes?
Expression for D;_,;, changes slightly

» Want to add covariates?
Straightforward to run an IV regression:

log 545 — log 510 = Vij — Vio = fi(w;) — quipj +§;
Test how much we lose using only a basis in f;(z;).

» Can we estimate ¢ instead of assuming it: S; = %Jrzqijqk ? Yes.
keT\{0} 1F
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Other Extensions

v

Removing multiple choices at once

Sik
1—sij—sis

Observing substitution at more consolidated level (ie: Make vs. Model)

» Conceptually easy:

v

A real world vending experiment with 8 product removals — here we don't see the entire D;_,;,

v

and must complete it.

v

Optimal Experimentation: Which product is most informative about D?

» Not quite a theory: probably high centrality ones
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Diversion as a Network

The matrix D has some useful properties:

v

We know that Dj;, € [0, 1].
Each row )}, D = 1.

D looks like a transition matrix with a network structure

v

v

» We can represented D, as a weighted directed graph.

Graph algorithms already used to sort the rows/columns of D.

v

v

We are playing with network centrality measures.
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Network Structure of Snacks: Our Estimates

Diversion Network b/w Vending products, CMS (I=3), edges = diversion > 4.5%
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Network Structure of Snacks: RCC

Diversion Network b/w Vending products, RCC, edges = diversion > 4.5%
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rsion as a Network: Work in Progress

What else can we do with this representation?

» Can we apply graph clustering to minimize number of “cuts” to segment into distinct
markets/categories?
» Some products (nodes) have high centrality but low share? Are these products that are likely to
provide “discipline” in merger settings?
» Relates to measures of centrality / eigenvalues.

» Cross elasticities are not a well-behaved network.

» Which centrality measure (early results seem to suggest Bonacich).
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Wrapping Up

Things work well and move away from logit’s insufficient sparsity

v

v

Inference: What is asymptotic experiment?

» Minimum Distance?
» Taking J — o07? (like Berry Linton Pakes 2004)
» Taking number of surveyed columns/individuals in D to be complete?

Identification

v

» We know that I = 1 (logit) is probably identified

» We know that I » rank(D) is probably not

» For I < rank(D) what else do we need to guarantee uniqueness?
(Matrix factorization problems are not always unique)

v

How much information on second choices is “enough”?

v

Explore which products matter for completing substitution patterns.
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