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Review of Diversion Ratios



Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between
products.

• Raise the price of product j and count the number of consumers who leave
• The diversion ratio Dj→k is the fraction of leavers who switch to the substitute k.
• A higher value of Dj→k indicates closer substitutes.
• Useful because it arises in the multi-product Bertrand FOC:

pj (1 + 1/ϵjj(p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Marginal Revenue

= cj + ∑
k∈Jf ∖j

(pk − ck) ⋅Dj→k(p).

• Dj→k ≡ ∂qk
∂pj
/ ∣∂qj

∂pj
∣.

• Can also write as Dj→k ≡
ϵkj
∣ϵjj ∣ ⋅

qj
qk
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General Advantages of Diversion

• Diversion allows for unit-free comparisons (shares sum to one).
• While own-elasticities are unit-free, this is not true of cross-elasticities.
• Is ϵjk = .01 or ϵjk = .03 a better substitute? We can’t tell.

• Need ϵjk ⋅ sk to know.
• But ϵjk ⋅

sk
pj
= Dj→k .

• The fraction of switchers choosing k allows comparisons.

• If tempted to report cross elasticities, consider reporting diversion ratios instead.
• Data on diversion can provide helpful variation for demand estimation.

• Petrin (2002), MicroBLP (2004), Grieco, Murry, Yurukoglu (2022)

• Diversion can be a helpful complement to merger simulation.
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Advantages of Diversion in Merger Analysis (Farrell and Shapiro, 2010)

Diversion vs. concentration:

• Most goods and services are differentiated.
• Merger policy should aim to measure the substitutability of the differentiated

offerings of competing firms.
• Concentration measures typically struggle to do this:

• not all firms “in the market” produce products that are equally good substitutes
• some firms “outside the market” may produce products that compete.

• If merging parties know they compete more closely than market-share analysis would
predict, we’ll have under-enforcement.
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Diversion as a Treatment Effect (Conlon Mortimer RJE 2021)

Diversion Ratio = fraction of consumers who switch from purchasing a product j to
purchasing a substitute k (following an increase in the price of j)

Treatment not purchasing product j
Outcome fraction of consumers who switch from j → k.

Compliers consumers who would have purchased at zj but do not purchase at z ′j .

This admits a Wald estimator:

Dj→k(x) =
E[qk ∣Z = z ′j ] −E[qk ∣Z = zj]
E[qj ∣Z = zj] −E[qj ∣Z = z ′j ]
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A LATE Theorem (Conlon Mortimer RJE 2021)

We also showed that most discrete-choice models yield the following representation:

Dzj→z ′j
j→k (x) = ∫

z ′j

zj
Dj→k,i(x)wi(zj , z ′j , x)dFi with wi(zj , z ′j , x) =

sij(zj , x) − sij(z ′j , x)
sj(zj , x) − sj(z ′j , x)

• Different interventions zj → z ′j (prices, quality, characteristics, assortment) give
different weights wi(zj , z ′j , x) and thus different local average diversion ratios.

• Individual Diversion Ratios Dj→k,i(x) don’t vary with the intervention
(determined only by how i ranks 2nd and 3rd choices).

• That paper establishes the decomposition above and derives some properties.
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A Special Case: Second Choices and Mixed Logit

If the underlying model is (any) mixed logit then:

Dj→k,i =
sik

1 − sij

And if the intervention is to eliminate j from the choice set J

wij =
sij

sj

So that (where πi is weight on each type: Monte Carlo/Quadrature/etc.)

Dj→k =
I
∑
i=1

πi ⋅
sik

1 − sij
⋅
sij

sj

Which it turns out is very convenient.
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Motivation



Motivation #1: Challenges of Parametric Models

Julie and I have been thinking about how consumers substitute across products for quite a
while

• We’ve looked at parametric models from lots of studies
• We ran some experiments on vending machines machines
• Even the most complicated random coefficients models suffer from three main

deficiencies:
• Never quite enough substitution to best substitutes
• Everything looks a bit too much like plain logit (substitution proportional to share)
• Your substitution patterns are only as good as your characteristics → if you want

extreme substitution patterns you need extreme characteristics.
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Motivation #2: What is the right diversion ratio

Moreso in Europe than US...

• Agencies have data on substitution
• Customer switching or win/loss of cell phone companies.
• Second choice surveys (UK CMA does a lot of this)
• “Course of business” diversion ratios (Farrel Shapiro 2010)

• These may not be the object we want to plug into the FOC as substitution patterns.
• Often something like ceteris paribus response to small change in price.

Can we still use the information from the wrong experiment in a disciplined way?
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Setup



Data

Consumers make discrete choices from set J and we observe market shares and select
second-choice probabilities

Sj = P(chooses j ∈ J )
Dj→k = P(chooses k ∈ J ∖ {j} ∣ chooses j ∈ J )

We observe the set of (j , k) elements in D which we label PΩ and its complement PΩ.

Wrinkle: We observe data only from a single market.
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Example: Cell Phone Merger

We consider a problem where we observe some aggregate shares S = [S1, . . . ,SJ], and
some elements of DT a matrix of second-choice probabilities.

DT =

VZ ATT TMo S Other
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

0 ? 0.30 0.30 ? VZ
? 0 0.45 0.15 0 ATT
? ? 0 0.45 ? TMo
? ? 0.20 0 ? S
? ? 0.05 0.10 0 Other

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.35
0.30
0.20
0.10
0.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

Can we fill in the missing elements?
Can we estimate parameters and simulate the merger?
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Definitions: First Choices

Utility is given by semi-parametric logit εij is Type I extreme value uij = Vij + εij

Conditional choice probabilities (sij):

P(uij > uij ′ ; for all j ≠ j ′ ∣ Vi) =
eVij

∑j ′∈J eVij′
≡ sij(Vi).

Unconditional choice probabilities (sj):

P(uij > uij ′ ; for all j ≠ j ′) = ∫ sij(Vi) f (Vi)∂Vi ≈
I
∑
i=1

πi sij(Vi) ≡ sj .

• P(Vi = vi) = πi so that πi ≥ 0 and ∑I
i=1 πi = 1 (so that π constitutes a valid probability

measure) for f (Vi).

• Let S be a dim(J ) × I matrix with column vectors si → We can write s = S π.
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Definitions: Second Choices

For any (semiparametric) mixture of logits we can write the probability that individual i
chooses k as their second choice given that j is their first choice as:

Dj→k ≡ P( chooses k ∈ J ∖ {j} ∣ chooses j ∈ J )

=
I
∑
i=1

πi ⋅
sik

1 − sik
⋅
sij

sj

It is convenient to interpret Dj→k as the (j , k)th entry in the second-choice matrix
D(S, π).
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Our Semiparametric Problem

min
(S,π)≥0

∥PΩ(D −D(S, π))∥ℓ2
+ λ ∥S − S π∥ℓ2

with ∥π∥ℓ1
≤ 1, ∥si∥ℓ1

≤ 1.

• Constraints: Choice probabilities sij sum to one, type weights πi sum to one.

• Use cross validation to select # of types I and Lagrange multiplier λ.

• Not-convex but not very difficult either.

• ℓ1 constraints lead to sparsity.

• Goal: estimate si (choice probabilities) and corresponding weights πi (Finite Mixture)
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Second Choice Matrix

• Individual i ’s share for each choice given by si = [si0, si1, . . . , siJ].
• Aggregate shares by ∑I

i=1 πi ⋅ si = s.

• The matrix of individual diversion ratios is given by Di = si ⋅ [ 1
(1−si)]

T
.

We write the (J + 1) × (J + 1) matrix of second-choice probabilities as:

D =
⎛
⎝

I
∑
i=1

πi ⋅ si ⋅ [
1

(1 − si)
]

T
⋅ diag(si/s)−1⎞

⎠

T

= diag(s)−1 ⋅ (
I
∑
i=1

πi ⋅ [
si

(1 − si)
] ⋅ si

T)
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Second Choice Matrix: Continued

Under relatively general conditions, second-choice probabilities can be written as:

D = diag(s)−1 ⋅
⎛
⎜⎜
⎝

I
∑
i=1

πi ⋅

⎡⎢⎢⎢⎢⎢⎢⎣

∣
si
∣

⎤⎥⎥⎥⎥⎥⎥⎦

⋅ [ si
1−si

]
⎞
⎟⎟
⎠

• Each individual diversion ratio is of rank one since it is the outer product of si with
itself (and some diagonal “weights”).

• The (unrestricted) matrix of diversion ratios D is (J + 1) × (J + 1).
• Logit restricts D to be of rank one. Nested logit of rank ≤ G (the number of

non-singleton nests). Mixed logit to rank(D) ≤ I (but bound is likely uninformative).
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Second Stage



Recovering Price Sensitivity

Recovering substitution patterns is great but... What about price sensitivity?

• We need these to evaluate mergers, welfare, compute elasticities, etc.
• Need to impose some additional constraints, some options

Vij −Vi0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln ŝij − ln ŝi0 if ŝij > 0,

n.a. if ŝij = 0.

• Can impose Vi0 = 0 like everyone else.
• Remember these are at the individual level
• For now assume that sij = 0 is about consideration, otherwise have to deal with

selection.
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Recovering Price Sensitivity : Options

• Usual IV conditions

min
βp

i ,fi(⋅)
∥z ′j (ln ŝij − ln ŝi0 − fi(xj) − pjβ

p
i )∥ℓ2

.

• Matching observed elasticities (from another study, quasi-experimental estimate, etc.)

min
βp

i <0
∥Ejj −

pj

sj

I
∑
i=1

βp
i ⋅ π̂i ⋅ ŝij ⋅ (1 − ŝij)∥

ℓ2

.

• Matching observed price-cost margins (antitrust agencies can subpoena..?)

c = p − (H⊙ (
I
∑
i=1

πi ⋅∆i(βp
i )))

−1

s,

∆i(βp
i ) = βp

i (−si si
T + diag[si]) .

min
βp

i <0
∥Cjj − cj(βp

i ,H, Ŝ, π̂)∥
ℓ2

.
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Dicussion of Rank Restriction



How do we fill in missing elements?

Typical Approach: estimate a parametric model.

• Multi-product demand with unrestricted matrices of (J + 1)2 cross-elasticities (such
as AIDS) is often hopeless with large J . Unrestricted second choices likely equally
hopeless.

• Maybe try LASSO or something to reduce cross terms?

• Plain logit places strong restrictions: Dj→k = sk
1−sj

.

• Nested logit Dj→k =
sk ∣g

Z(σ,sg)−sj ∣g
(same nest) where σ is nesting parameter.
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How do we fill in missing elements?

Mixed Logit: Explain substitution patterns using observed characteristics

• Typically assume independent normal RC
• Two products with similar x1 and high substitution → larger σ1.
• Two products with similar x2 and low substitution → smaller σ2.

McFadden and Train (2000) show a mixed logit uij = βixj + εij is fully flexible

1. This depends on f (βi) heterogeneity being nonparametric
2. And a sufficient set of characteristics X to explain D

Much work on (1), less attention on (2).
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How do we fill in missing elements?

Our paper: Consider a low-rank approximation to D

• Limit the rank of D directly in product space instead of controlling complexity with
product characteristics and parametric restrictions on random coefficients.

• Allow for sparsity in individual shares and substitution patterns, with possibility of
generating extreme patterns for top substitutes if necessary.

Works well in other domains (CS for image recovery/compression), and we show it has a
sensible economic interpretation.
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Low Rank Approximations: Image Compression

Image of Camille Jordan (1838-1922)

A ≈ U266×25 ⋅Σ25×25 ⋅V25×266
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Completing the Matrix: D for Autos

Second-Choice Data CMS (I=90) Predicted Diversion Prediction Error



When might we want to do this?

• We have access to aggregate market shares and some (but not all) second-choice
data (microBLP (2004); Grieco, Murry, Yurukoglou (2022)).

• We are interested in estimating substitution patterns across all sets of products but
have data on only a subset

• shares of largest cellular phone providers, and number porting or switching data for
merging parties only.

• survey data on “If this Tesco were to close where would you shop” (as UK CMA asks).
• win-loss data from merging parties only (Qiu, Sawada, Sheu (2022)) [not exactly]

• We lack sufficient variation in prices, other covariates, to estimate demand system.
• Product characteristics do not accurately capture substitution across products.
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Comparisons



Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

min
πi≥0
∑
j
(Sj −∑

i
πi ⋅ ŝij(β̂i))

2
subject to ∑

i
πi = 1

ŝij(β̂i) =
eβ̂i xj

1 +∑j ′ eβ̂i x ′j

• Draw βi ∼ G(βi) from a prior distribution.
• Solved in characteristic space with a semi-parametric form for F(βi).
• Often produces very sparse models πi = 0 (for all but 50 of 1000 simulated

consumers).

24



Comparison: Raval et al. (2017, 2020)

• Cut data into bins (zip, income, age, gender)
• Observe shares (hospital demand) within each bin sg(i),j
• A separate plain logit for each bin with only ξj as the common parameter.
• Use second choices from hospital closures (natural disasters) to compare models.

sg(i),j =
eβg xj+ξj

1 +∑j ′ eβg xj′+ξj′
, Dj→k,i =

sg(i),k
1 − sg(i),j
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Comparison: Latent Class Logit (Greene and Hensher 2003)

Most similar to what we’re doing.

• Estimate separate βi for each class.
• Estimate proportion of each class πi .
• Estimating finite mixtures is tricky and usually requires EM.

sk(π, β) =
I
∑
i=1

πi ⋅ (
eβi xij+ξj

1 +∑k eβi xik+ξk
)
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Monte Carlo



Generating Data

• Fit (i) nested logit, (ii) RC logit to data on vending machines from Conlon and
Mortimer (JPE, 2021).

• Generate fake sales and diversion from those parameter estimates.
• J = 45 products; T = 250 markets; with 30 randomly selected products in each.

Market size M = 1000 per market. Nesting parameter is ρ = 0.25.
• Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.

• Estimate a variety of misspecified parametric models: RC on nest dummies, RC on
characteristics (Salt, Sugar, Nut Content), and our semiparametric estimator.

• Include m≪ J columns of Dj→k as extra moments.
• Compare out-of-sample predicted Diversion Ratios.

• MAD: Median (∣Dj→k − D̂j→k ∣) for (j , k) ∈ {Validation}.
• RMSE:

√
1
n ∑(j,k)∈{Validation} ∣Dj→k − D̂j→k ∣2
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Monte Carlo: DGP is Nested Logit

N of Individuals
123456 10 15 20 25 30

R
M

S
E

0.14

0.49

0.84

1.19

1.54

1.89

RMSE

N of Individuals
123456 10 15 20 25 30

M
A

D

1.00

0.37

0.14

0.06

MAD

Cross-validation Results - Nested Logit DGP

In-sample CMS
Out-of-sample CMS

Logit
RCN

RCN + 5 cols
In-sample SVD

• RCC is mis-specified
• Diversion Moments improve efficiency of RCN
• I ≥ 6 does a pretty good job.
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Monte Carlo: DGP is RC on chars

N of Individuals
123456 10 15 20 25 30

R
M

S
E

1.00000

0.10000

0.01000

0.00100

0.00010

0.00001

RMSE

N of Individuals
123456 10 15 20 25 30

M
A

D

1.000

0.100

0.010

0.001

MAD

Cross-validation Results - RC Logit DGP

In-sample CMS
Out-of-sample CMS

Logit
RCN

RCN + 5 cols
In-sample SVD

• RCN is mis-specified
• I = 6 does the best job.
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Application to Autos Data



Description of Autos Data

• Subset of data from Grieco, Murry and Yurukoglu (2022).
• Focus on one year of sales from 2015

• Aggregate sales observed at the model-year level from Ward’s Automotive.
• Second choices from MaritzCX survey (53,328 purchases)
• In total, J = 318 products.

• Same Goal: Predict unobserved second-choice data without characteristics.
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MaritzCX Survey data (318 Cars and Light Trucks)



Cross Validation: Model Selection

N of Individuals
1 510 20 30 40 50 60 70 80 90 100110

R
M

S
E

3.13

1.00

1.50

2.00

2.50

3.00

3.50
RMSE

N of Individuals
1 510 20 30 40 50 60 70 80 90 100110

M
A

D

0.42

0.25

0.30

0.35

0.40

0.45

0.50

MAD

Cross-validation Results

In-sample CMS Out-of-sample CMS In-sample GMY SVD

Dots are cross-validated means.
Seems to select I = 90 (bias-variance tradeoff).
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In-Sample Performance

1510 20 30 40 50 60 70 80 90 100110
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Analysis of Consumer Weights

N of individuals
1 5 10 20 30 40 50 60 70 80 90 100 110

H
H

I

e5

e6

e7

e8

e9

Consumer Weights Concentration

CMS Equal Weights
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Analysis of Sparsity

N of individuals
1 5 10 20 30 40 50 60 70 80 90 100 110

%
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10.00
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80.00

90.00
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Comparison of Implied Diversion

Data GMY

CMS (I=30) CMS (I=90)
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Top Substitutes: Honda Accord

Model Raw Logit CMS I=30 CMS I=90 GMY
Subaru Legacy 10.27 1.01 8.05 8.21 1.3
Toyota Camry 9.1 0.84 6.7 6.85 9.48

Acura Tlx 6.07 0.71 1.83 2.07 0.46
Honda Civic 5.97 0.91 2.9 2.75 3.89

Mazda Mazda6 5.68 0.52 4.77 4.87 1.32
Volkswagen Passat 4.01 0.74 4.34 4.41 1.22

Nissan Altima 3.52 0.6 3.87 3.89 7.22
Hyundai Sonata 3.52 0.68 5.61 5.68 5.09

Volkswagen Jetta 3.33 0.97 4.4 4.23 1.48
Mazda Mazda3 2.15 1.08 2.08 1.61 1.49
Toyota Corolla 1.96 0.71 2.46 2.32 4.66

Table 1: Top Substitutes: Honda Accord
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Top Substitutes: Ford F-Series

Model Raw Logit CMS I=30 CMS I=90 GMY
Ram Pickup 24.59 1.36 23.38 23.37 19.4
Gmc Sierra 20.29 1.28 21.0 21.02 17.27

Chevrolet Silverado 15.62 1.21 16.73 16.75 33.62
Toyota Tundra 12.98 0.76 12.69 12.69 2.29

Toyota Tacoma 6.31 1.13 3.6 3.62 2.83
Chevrolet Colorado 4.64 1.08 3.37 3.38 2.87

Gmc Canyon 2.3 0.62 1.71 1.73 1.02
Nissan Frontier 1.63 0.67 0.83 0.84 0.61
Jeep Wrangler 1.59 0.62 0.96 0.81 0.06

Nissan Titan 0.7 0.07 0.79 0.81 0.18
Ford Explorer 0.63 0.4 0.05 0.03 0.71

Table 2: Top Substitutes: Ford F-Series
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Top Substitutes: Mercedes-Benz Sprinter Van

Model Raw Logit CMS I=30 CMS I=90 GMY
Ford Transit Wagon 66.67 0.19 47.63 66.19 0.04

Ram Promaster 16.67 0.02 0.0 16.19 1.76
Ford Transit Connect 8.33 0.18 7.33 7.85 0.01

Nissan Nv 8.33 0.17 29.96 7.58 6.52
Mini Cooper 0.0 0.45 0.0 0.0 0.0

Volkswagen Beetle Ii Cabrio 0.0 0.25 0.0 0.0 0.0
Audi A5 0.0 0.28 0.0 0.0 0.02

Mazda Mx-5 Miata 0.0 0.19 0.0 0.0 0.0
Audi S5 0.0 0.15 0.0 0.0 0.0

Porsche Boxster 0.0 0.07 0.0 0.0 0.0
Volkswagen Eos 0.0 0.07 0.0 0.0 0.0

Table 3: Top Substitutes: Mercedes-Benz Sprinter Van
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Vending Example



Product Removal Experiments

• Described in Conlon, Mortimer, Sarkis, Rodriguez-Valdenegro (2023)
• Used in Conlon Mortimer (JPE 2021) not (AEJM 2013)!
• Remove best sellers by category:

• Chocolate: Snickers and M&M Peanut
• Cookie: Animal Cracker and Famous Amos
• Salty: Doritos and Cheetos

• 66 Vending machines in Downtown Chicago office buildings (around 10,000 treated
individuals per arm)
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Zoo Animal Crackers

Product Shares Nonparam Logit RCC RCN CMS(I=2) CMS(I=3)
Outside Good 30.12 23.86 22.93 23.37 20.2 29.27 25.44

M&M Peanut 1.74 oz 4.14 9.72 3.34 3.74 2.43 5.94 7.31
Twix Caramel 2.42 7.81 2.44 2.91 1.79 6.72 9.0

Snickers 2.07oz 3.96 6.93 3.19 3.53 2.33 7.35 8.08
Planters (Con) 1.92 6.15 2.19 1.85 1.23 3.99 5.21

Choc Chip Famous Amos 2.05 5.99 1.66 1.87 8.23 0.31 4.74
Rold Gold (Con) 2.56 5.15 3.01 1.29 1.68 2.16 2.08

Choc Herhsey (Con) 0.22 3.68 1.31 1.63 1.0 2.07 2.42
Rice Krispies Treats 1.7oz 0.27 3.63 0.99 1.07 0.69 2.49 1.74

Baked (Con) 2.39 3.04 2.09 1.82 1.17 2.32 1.15
Popcorn (Con) 0.42 2.81 1.0 0.71 0.56 0.58 0.56



Snickers and M&M Peanut

Product Shares Nonparam Logit RCC RCN CMS(I=2) CMS(I=3)
Outside Good 30.12 36.33 24.02 24.64 27.99 34.78 33.62
Twix Caramel 2.42 11.64 2.56 2.93 5.31 8.56 11.97

M&M Milk Chocolate 1.16 8.33 2.09 2.63 4.43 5.73 7.1
Choc Mars (Con) 1.11 6.79 1.76 2.11 3.68 1.71 2.22

Reeses Peanut Butter Cups 0.59 6.57 1.84 2.78 3.83 3.48 5.12
Butterfinger 0.5 5.22 1.22 1.71 2.49 3.75 4.2

Raisinets 1.6 3.28 1.67 2.12 3.48 2.38 2.92
Nonchoc Other (Con) 0.78 2.63 1.45 1.81 1.33 0.69 0.74

Choc Chip Famous Amos 2.05 2.48 1.74 1.79 1.23 0.0 0.21
Choc Herhsey (Con) 0.22 2.16 1.37 1.69 2.98 1.85 2.15

Planters (Con) 1.92 2.02 2.3 4.16 1.52 4.1 5.13
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Individual Estimates

Model/Rank: I = 1 I = 2 I = 3 I = 4
Weight on individual: 100.0% 81.2% 18.8% 62.8% 31.4% 5.8% 73.5% 24.1% 2.4% 0.02%

Product Logit Sj i = 1 i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 4

SA
LT

Y 
SN

AC
KS

Snyders (Con) 2.21 0.70 0.64 0.70 0.00 0.00 2.17 0.00 2.38 0.00 0.23
Cheetos 2.52 0.50 0.00 0.00 0.24 0.25 0.80 0.31 0.00 0.00 0.00

Ruffles (Con) 0.98 1.88 0.98 4.82 0.00 2.53 4.84 0.03 5.05 2.54 0.00
Dorito Nacho 2.05 0.98 0.90 1.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rold Gold (Con) 0.94 1.86 2.35 0.00 2.50 0.13 1.40 0.65 1.95 0.14 4.41
Baked (Con) 1.99 2.08 2.49 0.40 1.36 0.00 3.94 2.35 3.76 0.00 0.43

Salty Other (Con) 2.78 0.22 0.29 0.00 0.05 0.00 0.59 0.00 0.71 0.00 0.30
Sun Chip 1.81 4.76 0.00 22.96 0.00 19.29 5.19 0.09 5.71 18.70 0.00
Cheez-It 1.77 1.47 1.06 2.67 0.00 0.91 3.90 0.00 4.00 0.93 0.43

Jays (Con) 1.48 0.17 0.23 0.00 0.04 0.00 0.47 0.00 0.57 0.00 0.24
Frito 2.03 1.41 1.28 1.65 0.00 0.00 4.55 0.00 4.70 0.00 0.04

FritoLay (Con) 1.49 1.71 1.57 1.94 0.15 0.36 4.49 0.53 4.50 0.45 0.34
Smartfood 1.51 0.56 0.67 0.00 0.31 0.16 1.02 0.00 1.17 0.18 0.69

Lays 1.45 0.54 0.56 0.31 0.00 0.00 1.62 0.00 1.68 0.00 0.30
Cheetos Flamin 0.96 0.55 0.50 0.55 0.00 0.00 1.83 0.00 1.92 0.03 0.00

Dorito Blazin 1.45 1.47 0.01 6.47 0.00 5.77 1.82 0.00 2.06 5.62 0.00
Popcorn (Con) 2.06 0.51 0.63 0.00 0.61 0.33 0.34 0.22 0.54 0.36 0.80

Ritz Bits 0.51 0.16 0.22 0.00 0.17 0.00 0.23 0.00 0.32 0.03 0.26

CH
O

CO
LA

TE
 C

AN
DY

M&M Peanut 3.21 4.78 6.46 0.00 8.95 0.00 1.18 16.65 0.00 0.00 0.00
Snickers 3.53 6.08 8.00 0.00 9.75 0.70 0.00 14.91 0.00 0.11 0.13

Twix Caramel 2.29 5.19 7.32 0.00 11.03 0.00 0.00 4.04 0.00 0.00 18.60
Raisinets 1.47 1.47 2.03 0.00 2.67 0.00 0.21 2.74 0.03 0.05 2.06

M&M Milk Choc 1.80 3.63 4.90 0.00 6.47 0.00 0.67 5.31 0.36 0.04 7.24
Choc Mars (Con) 2.13 1.03 1.46 0.00 2.03 0.00 0.11 0.00 0.31 0.00 4.69
Reeses PB Cups 1.68 1.62 2.98 0.00 4.68 0.00 0.36 2.95 0.25 0.00 7.38

Butterfinger 1.10 2.72 3.21 0.80 3.69 1.13 1.67 2.06 1.73 1.16 5.62
Choc Herhsey (Con) 1.22 2.87 1.58 7.20 1.64 5.92 2.92 0.91 3.23 5.77 2.53

Model/Rank: I = 1 I = 2 I = 3 I = 4
Weight on individual: 100.0% 81.2% 18.8% 62.8% 31.4% 5.8% 73.5% 24.1% 2.4% 0.02%

Product Logit Sj i = 1 i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 4

NO
NC

HO
C.

 
CA

ND
Y Skittles Original 1.03 0.12 0.18 0.00 0.03 0.00 0.36 0.00 0.43 0.00 0.17

Nonchoc Other (Con) 1.06 0.41 0.59 0.00 0.65 0.00 0.32 0.00 0.41 0.00 1.54
Twizzlers 1.66 1.16 1.20 0.86 0.90 0.59 1.71 1.96 1.41 0.66 0.00

CO
O

KI
ES

ZAnimal Cracker 1.90 0.29 0.35 0.14 0.33 0.39 0.00 0.16 0.00 0.00 0.00
CC Fam Amos 1.58 1.57 0.00 3.66 0.04 26.42 0.00 0.23 0.00 28.73 0.00

Ruger Wafer (Con) 1.60 0.54 0.68 0.00 0.46 0.00 0.94 0.00 1.07 0.00 1.31
Grandmas CC 1.15 0.84 0.46 2.07 0.34 2.21 0.89 0.47 0.92 2.25 0.05

Rasbry Knotts 0.68 1.10 0.47 3.18 0.45 2.89 1.12 0.76 1.19 2.87 0.00
Choc Fam Amos 0.91 1.35 1.09 2.12 1.47 2.65 0.38 1.19 0.52 2.63 1.35

Nabisco (Con) 1.23 1.44 1.22 2.04 1.24 2.28 1.11 0.99 1.20 2.21 1.44

PA
ST

RY Pop-Tarts (Con) 2.42 0.27 0.39 0.00 0.34 0.00 0.36 0.00 0.46 0.00 0.87
Rice K Treats 0.85 2.25 2.64 0.80 2.06 0.16 3.22 2.78 3.03 0.24 1.59

OT
HE

R

Nature Valley (Con) 2.13 1.42 1.47 1.02 0.42 0.00 3.54 1.63 3.22 0.00 0.00
Planters (Con) 1.63 4.81 3.51 9.13 4.39 8.99 2.79 4.91 2.79 8.74 3.10
KarNuts (Con) 1.65 1.25 1.68 0.00 1.71 0.00 1.05 2.51 0.87 0.01 0.36

Farleys Fruit Snax 0.99 0.58 0.57 0.45 0.04 0.00 1.69 0.16 1.69 0.00 0.08
Cherry Fruit Snax 0.52 0.09 0.14 0.00 0.05 0.00 0.25 0.00 0.30 0.00 0.12

Cliff (Con) 3.91 1.03 1.29 0.00 1.30 0.51 0.67 0.62 0.82 0.48 2.03
Outside Good 25.34 28.58 29.75 22.86 27.43 15.42 33.28 27.87 32.77 15.06 29.27



Extensions and Conclusion



Extensions

• What about (exogenous) price or quality changes?
Expression for Dj→k changes slightly if just quality index βi = β like ξj

• Want to add covariates?
Straightforward to run an IV regression:

log ŝij − log ŝi0 = Vij −Vi0 = fi(xj) − αipj + ξj

Test how much we lose using only a basis in fi(xj).
• A real world vending experiment with 8 product removals – here we don’t see the

entire Dj→k and must complete it.
• Optimal Experimentation: Which product is most informative about D?

• Not quite a theory: probably high centrality ones (!)
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Diversion as a Network

The matrix D has some useful properties:

• We know that Djk ∈ [0, 1].
• Each row ∑k Dj→k = 1.
• D looks like a transition matrix with a network structure
• We can represented Djk as a weighted directed graph.
• I’ve already used some graph algorithms to sort the rows/columns of D.

45



Network Structure of Cars: Raw Data
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Network Structure of Snacks: Our Estimates
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Network Structure of Snacks: RCC
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Diversion as a Network: Work in Progress

What else can we do with this representation?

• Can we apply graph clustering to minimize number of “cuts” to segment into distinct
markets/categories?

• Some products (nodes) have high centrality but low share? Are these products that
are likely to provide “discipline” in merger settings?

• Relates to measures of centrality / eigenvalues.
• Cross elasticities are not a well-behaved network.

• Which centrality measure (early results seem to suggest Bonacich).
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Conclusion

• Allowing for flexible unobserved types can give more accurate substitution patterns
• Particularly true in capturing closeness of best substitutes not captured by product

characteristics (e.g. Snickers and Peanut M&M’s vs Snickers and Milky Way)

• Using observable substitution patterns (experiments or surveys) and “completing”
the (J + 1) × (J + 1) matrix with a low-rank approximation looks promising.

• How much information on second choices is “enough”?
• Which products are important for completing substitution patterns?
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