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Motivation



Fundamental Issue with Differentiated Products Demand

The too-many-parameters problem: a complete substitution matrix has J2 parameters, but aggregate

data have only J observations. In order to predict substitution, we need to restrict consumers’ choice

problem (reduce dimensionality). Two options:

1. In product space, impose structure on the form of the underlying utility functions

ln qjt “ γj `
ÿ

k

αjk ln pkt ` ejt

§ Examples: log´ log or AIDS (Deaton and Muellbauer (1980 AER))

§ Often with multi-level structure so that αjk “ 0 for certain pairs.

2. In characteristic space, assume substitution patterns are functions of product characteristics

uij “ βixj ` ξj ` εij .
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Typical parametric approach in characteristic space

Mixed Logit: Explain substitution patterns using observed characteristics

§ Often assume independent normal RC

§ Two products with similar x1 and high substitution Ñ larger σ1.

§ Two products with similar x2 and low substitution Ñ smaller σ2.

McFadden and Train (2000) show a mixed logit uij “ βixj ` εij is fully flexible

1. This depends on fpβiq heterogeneity being nonparametric

2. And a sufficient set of characteristics X to explain substitution patterns.

Much work on (1), less work on (2).
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Motivation #1: Challenges of Parametric Demand Estimation

Even the most flexible and data-rich random-coefficients models suffer from three main deficiencies:

1. Never quite enough substitution to best substitutes

2. Everything looks a bit too much like plain logit (substitution proportional to share)

3. Substitution patterns are only as good as your characteristics Ñ if you want extreme substitution

patterns you need extreme characteristics.
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Motivation #2: What is the right measure of substitution?

For competition policy enforcement:

§ Agencies may have (possibly limited) data on substitution, but not much else

§ Second-choice surveys (e.g., Sainsbury’s/Asda, Microsoft/Activision)

§ Customer switching or win/loss data (e.g., cell phone companies).

§ Natural or field experiments (hospital closures; product removals)

§ These may not be the objects we want to use as substitution patterns.

§ Often we want to understand ceteris paribus responses to small changes in price.

Can we still use the information from the wrong experiment in a disciplined way?
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Today’s Paper

Can we construct a low-rank approximation to substitution patterns in product space?

§ Idea: avoid the too-many-problem by directly restricting the rank of substitution matrix

§ Trick: re-cast substitution in terms of second-choice probabilities

§ We show this leads to a convenient semi-parametric representation.
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When might we want to do this?

§ Product characteristics do not accurately capture substitution across products.

§ We lack sufficient variation in prices, other covariates, to estimate demand system.

§ We need to estimate substitution patterns across all products but have data on only a subset:

§ shares of cell phone providers, but number porting/win-loss data for a subset (merging parties)

§ second-choice surveys (UK CMA: Sainsbury’s/Asda, Microsoft/Activision, Amazon/Deliveroo)

§ aggregate market shares and a subset of second-choice data (microBLP (2004); Grieco, Murry,

Yurukoglou (2024)).
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Example: Cell Phone Merger

Suppose we observe some aggregate shares S “ rS1, . . . ,SJ s, and number porting data DT

DT “

VZ ATT TMo S Other
¨
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˚

˚

˚

˝

˛

‹

‹

‹

‹

‚
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—
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ffi

ffi
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fl

“ S

Can we fill in the missing elements and simulate the merger?
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Example of Second-Choice Survey Data, 318 Cars and Light Trucks

Second-Choice Data



Low Rank Approximations: Image Compression

Image of Camille Jordan (1838-1922)

A « U266ˆ25 ¨ Σ25ˆ25 ¨ V25ˆ266

Jordan Animation

Image Compression Demo

Matrix Completion (i.e., the Netflix Prize)
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https://www.youtube.com/watch?v=pAiVb7gWUrM
https://timbaumann.info/svd-image-compression-demo/
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1


Review of Diversion Ratios



Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between products.

§ Raise the price of product j and count the number of consumers who leave

§ The diversion ratio DjÑk is the fraction of leavers who switch to the substitute k.

§ A higher value of DjÑk indicates closer substitutes.

§ Useful because it arises in the multi-product Bertrand FOC:

pj p1 ` 1{ϵjjppqq
looooooooomooooooooon

Marginal Revenue

“ cj `
ÿ

kPJf zj

ppk ´ ckq ¨ DjÑkppq.

§ DjÑk ”
Bqk
Bpj

{

ˇ

ˇ

ˇ

Bqj
Bpj

ˇ

ˇ

ˇ
.

§ Can also write as DjÑk ”
ϵkj

|ϵjj |
¨
qj
qk
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Diversion as a Treatment Effect (Conlon Mortimer RJE 2021)

Diversion Ratio = fraction of consumers who switch from purchasing a product j to purchasing a

substitute k (following an increase in the price of j)

Treatment not purchasing product j

Outcome fraction of consumers who switch from j Ñ k.

Compliers consumers who would have purchased at zj but do not purchase at z1
j .

This admits a Wald estimator:

DjÑkpxq “
Erqk|Z “ z1

js ´ Erqk|Z “ zjs

Erqj |Z “ zjs ´ Erqj |Z “ z1
js
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A LATE Theorem (Conlon Mortimer RJE 2021)

We also showed that most discrete-choice models yield the following representation:

D
zjÑz1

j

jÑk pxq “

ż z1
j

zj

DjÑk,ipxqwipzj , z
1
j , xq dFi with wipzj , z

1
j , xq “

sijpzj , xq ´ sijpz1
j , xq

sjpzj , xq ´ sjpz1
j , xq

§ Different interventions zj Ñ z1
j (prices, quality, characteristics, assortment) give different weights

wipzj , z
1
j , xq and thus different local average diversion ratios.

§ Individual Diversion Ratios DjÑk,ipxq don’t vary with the intervention

(determined only by how i ranks 2nd and 3rd choices).

§ That paper establishes the decomposition above and derives some properties.
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A Special Case: Second Choices and Mixed Logit

If the underlying model is (any) mixed logit then:

DjÑk,i “
sik

1 ´ sij

And if the intervention is to eliminate j from the choice set J

wij “
sij
sj

And let dFi “ πi be weight on each type i (Monte Carlo/Quadrature/etc):

DjÑk “

I
ÿ

i“1

sik
1 ´ sij

¨
πi ¨ sij
sj

Different interventions give different weights (but don’t change individual DjÑk,i).

13/57



wij’s, RC Logit, Other Interventions

wijpxq9

second-choice data sijpxq

price change B
Bpj

sijpxqp1 ´ sijpxqq ¨ |αi|

characteristic change B
Bxj

sijpxqp1 ´ sijpxqq ¨ |βi|

small quality change B
Bξj

sijpxqp1 ´ sijpxqq

finite price change wippj , p
1
j , xq |sijpp1

j , xq ´ sijppj , xq|

finite quality change wipξj , ξ
1
j , xq |sijpξ1

j , xq ´ sijpξj , xq|

willingness to pay (WTP)
sijpxq

|αi|¨si0pxq
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Data and the Problem of Rank

Reduction



How does one measure diversion?

1. From a parametric model: estimate demand and compute
”

Bqj
Bpj

ppq

ı´1
Bqk
Bpj

ppq

2. Farrell Shapiro (2011) hoped for info gathered “in an email” or “normal course of business”

3. From observed “Win-Loss” data (slightly different weights)

4. Randomized choice sets

§ Chris and I did this in vending machines.

§ Many examples of online search results/product listings

5. From surveys of second choices (e.g. stated preference)
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Data

Consumers make discrete choices from set J and we observe market shares and select second-choice

probabilities

Sj “ Ppchooses j P J q

DjÑk “ Ppchooses k P J ztju | chooses j P J q

We observe the set of pj, kq elements in D which we label PΩ and its complement PΩ.

Wrinkle: We observe data only from a single market.
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Example of Second-Choice DjÑk, 318 Cars and Light Trucks, MaritzCX

Second-Choice Data



Back to rank reduction

Consider a low-rank approximation to substitution patterns using data on second choices.

§ Limit the rank of D directly in product space instead of controlling complexity with product

characteristics and parametric restrictions on random coefficients.

§ Allow for sparsity in individual shares and substitution patterns, with possibility of generating

extreme patterns for top substitutes if necessary.

§ If A „ B and B „ C then either A „ C or we need to increase the rank!
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Setting up the Estimator



Definitions: First Choices

Utility is given by semi-parametric logit; εij is Type I extreme value uij “ Vij ` εij

Conditional choice probabilities (sij):

Ppuij ą uij1 ; for all j ‰ j1
| Viq “

eVij

ř

j1PJ eVij1
” sijpViq.

Unconditional choice probabilities (sj); integrate out over distribution of Vij :

Ppuij ą uij1 ; for all j ‰ j1
q “

ż

sijpViq fpViq BVi «

I
ÿ

i“1

πi sijpViq ” sj .

§ PpVi “ viq “ πi so that πi ě 0 and
řI

i“1 πi “ 1 (so that π constitutes a valid probability measure) for

fpViq.

§ Let S be a dimpJ q ˆ I matrix with column vectors si Ñ We can write s “ Sπ.
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Definitions: Second Choices

For any (semiparametric) mixture of logits we can write the probability that individual i chooses k as

their second choice given that j is their first choice as:

DjÑk ” Pp chooses k P J ztju | chooses j P J q

“

I
ÿ

i“1

πi ¨
sik

1 ´ sij
¨
sij
sj

It is convenient to interpret DjÑk as the pj, kqth entry in the second-choice matrix DpS, πq.
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Second-Choice Matrix

§ Individual i’s share for each choice given by si “ rsi0, si1, . . . , siJ s.

§ Aggregate shares by
řI

i“1 πi ¨ si “ s.

§ The matrix of individual diversion ratios is given by Di “ si ¨

”

1
p1´siq

ıT

.

We write the pJ ` 1q ˆ pJ ` 1q matrix of second-choice probabilities as:

D “

˜

I
ÿ

i“1

πi ¨ si ¨

„

1

p1 ´ siq

ȷT

¨ diagpsi{sq

¸T

“ diagpsq´1 ¨

˜

I
ÿ

i“1

πi ¨

„

si
p1 ´ siq

ȷ

¨ si
T

¸
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Second-Choice Matrix: Continued

Under relatively general conditions, second-choice probabilities can be written as:

D “ diagpsq´1 ¨

¨

˚

˝

I
ÿ

i“1

πi ¨

»

—

–

|

si
|

fi

ffi

fl

¨

”

si
1´si

ı

˛

‹

‚

§ Each individual diversion ratio is of rank one since it is the outer product of si with itself (and

some diagonal “weights”).

§ The (unrestricted) matrix of diversion ratios D is pJ ` 1q ˆ pJ ` 1q.

§ Logit restricts D to be of rank one. Nested logit of rank ď G (the number of non-singleton

nests). Mixed logit to rankpDq ď I (but bound is likely uninformative).
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Our Semiparametric Problem

Fix rankpDpS, πqq “ I, and for each choice of I solve:

min
pS,πqě0

}PΩpD ´ DpS, πqq}ℓ2
` λ }S ´ Sπ}ℓ2

with }π}ℓ1
ď 1, }si}ℓ1 ď 1.

§ Goal: estimate si (choice probabilities) and corresponding weights πi (Finite Mixture)

§ Not convex, but not very difficult either.

§ Constraints: Choice probabilities sij sum to one, type weights πi sum to one.

§ ℓ1 constraints lead to sparsity.

§ Idea: Control the rank by limiting I directly

§ Use cross validation to select # of types I and Lagrange multiplier λ.

§ Matrix completion: We can construct estimates of DpS, πq including elements of PΩ.
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Aside on Matrix Algebra

§ Absent any constraints from discrete choice (and first-choice probabilities) we know the solution

is similar to the Camille Jordan problem

§ Take the first I singular values from the SVD (as in Camille Jordan example)

§ The Nuclear Norm of a matrix }D}˚ is the sum of its singular values and provides a “continuous

approximation” to its rank.

§ Measure how complicated our second-choice data/parametric models are.
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Comparisons



Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

min
πiě0

ÿ

j

˜

Sj ´
ÿ

i

πi ¨ ŝijppβiq

¸2

subject to
ÿ

i

πi “ 1

ŝijppβiq “
e

pβixj

1 `
ř

j1 e
pβix1

j

§ Draw βi „ Gpβiq from a prior distribution.

§ Solved in characteristic space with a semi-parametric form for fpβiq.

§ Often produces very sparse models πi “ 0 (for 950/1000 simulated consumers).

§ Data requirement: characteristics that vary across markets.

§ Fix grid of pβi (and thus ŝij); search over πi.

See Heiss, Hetzenecker, Osterhaus (JoE 2022).
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Comparison: Raval et al. (2017, 2020)

§ Cut data into bins (zip, income, age, gender)

§ Observe shares (hospital demand) within each bin sgpiq,j

§ A separate plain logit for each bin with only ξj as the common parameter.

sgpiq,j “
eβgxj`ξj

1 `
ř

j1 eβgxj1 `ξj1
, DjÑk,i “

sgpiq,k

1 ´ sgpiq,j

§ Use second choices from hospital closures (natural disasters) to compare models.

§ Requires individual data grouped into bins, plus characteristics.

§ Fix πi’s, search for βg (and thus sgpiq).
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Comparison: Latent Class Logit (Greene and Hensher 2003)

Most similar to what we’re doing conceptually.

§ Estimate separate βi for each class.

§ Estimate proportion of each class πi.

§ Estimating finite mixtures is tricky and usually requires EM.

skpπ, βq “

I
ÿ

i“1

πi ¨

ˆ

eβixij`ξj

1 `
ř

k e
βixik`ξk

˙

§ We work in product space (no need for characteristics), using the summing-up constraints to

enforce that the model is consistent with discrete choice.
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Monte Carlo



Generating Data

§ Fit (i) nested logit, (ii) RC logit to data on vending machines (Conlon and Mortimer JPE, 2021).

§ Generate fake sales and second-choices from those parameter estimates.

§ J “ 45 products; T “ 250 markets; with 30 randomly selected products in each.

Market size M “ 1000 per market. Nesting parameter is ρ “ 0.25.

§ Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.

§ Estimate a variety of misspecified parametric models: RC on nest dummies, RC on characteristics

(Salt, Sugar, Nut Content), and our semiparametric estimator.

§ Include m ! J columns of DjÑk as extra moments.

§ Compare out-of-sample predicted second-choice probabilities.

§ MAD: Median
´

|DjÑk ´ D̂jÑk|

¯

for pj, kq P PΩ (Validation).

§ RMSE:
b

1
n

ř

pj,kqPP
Ω

u
|DjÑk ´ D̂jÑk|2
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Monte Carlo: DGP is Nested Logit

N of Individuals
123456 10 15 20 25 30

R
M

S
E

0.14

0.49
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1.54

1.89

RMSE

N of Individuals
123456 10 15 20 25 30

M
A

D

1.00

0.37

0.14

0.06

MAD

Cross-validation Results - Nested Logit DGP

In-sample CMS
Out-of-sample CMS

Logit
RCN

RCN + 5 cols
In-sample SVD
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Monte Carlo: DGP is RC on chars (Interpolation!)

N of Individuals
123456 10 15 20 25 30

R
M

S
E

1.00000

0.10000

0.01000

0.00100

0.00010

0.00001
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M
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Cross-validation Results - RC Logit DGP

In-sample CMS
Out-of-sample CMS

Logit
RCN

RCN + 5 cols
In-sample SVD
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Application to Autos Data



Description of Autos Data

§ Subset of data from Grieco, Murry and Yurukoglu (QJE 2023).

§ Focus on one year of sales from 2015

§ Aggregate sales observed at the model-year level from Ward’s Automotive.

§ Second choices from MaritzCX survey (53,328 purchases)

§ In total, J “ 318 products.

§ Same Goal: Predict unobserved second-choice data without characteristics.

§ How: Split sample into PΩ and PΩ
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MaritzCX Survey data (318 Cars and Light Trucks)

Second-Choice Data



Cross Validation: Model Selection

Rank
12 5 10 1516 20 25 30

R
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S
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M
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Dots are cross-validated means.

Seems to select I “ 90 (bias-variance tradeoff).
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In-Sample Performance
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Analysis of Consumer Weights

N of individuals
1 2 5 10 15 16 20 25 30

H
H

I

500

1000

2000

3000

5000

Consumer Weights Concentration

CMS Equal Weights
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Comparison of Implied Diversion

Data GMY

CMS (I=15) CMS (I=30)
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Profiles of Types (Rank 15)
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Top Substitutes: Ford F-Series

Model Raw Logit CMS I=15 CMS I=30 GMY

Ram Pickup 24.59 0.88 21.46 22.23 19.40

Gmc Sierra 20.29 0.61 14.97 21.92 17.27

Chevrolet Silverado 15.62 0.78 13.41 19.63 33.62

Toyota Tundra 12.98 0.55 16.32 12.79 2.29

Toyota Tacoma 6.31 0.76 3.39 3.13 2.83

Chevrolet Colorado 4.64 0.63 3.22 2.86 2.87

Gmc Canyon 2.30 0.30 0.76 1.38 1.02

Nissan Frontier 1.63 0.43 0.92 1.69 0.61

Jeep Wrangler 1.59 0.69 1.33 0.94 0.06

Nissan Titan 0.70 0.05 1.18 1.17 0.18

Ford Explorer 0.63 0.38 0.16 0.14 0.71
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Top Substitutes: Honda Odyssey

Model Raw Logit CMS I=15 CMS I=30 GMY

Toyota Sienna 44.51 0.50 41.02 41.43 28.34

Chrysler Town & Country 11.27 0.44 13.70 13.66 6.90

Dodge Caravan 8.67 0.61 12.11 12.90 7.04

Kia Sedona 8.38 0.18 7.22 7.22 7.59

Mazda Mazda5 2.02 0.19 0.07 0.00 0.01

Nissan Quest 2.02 0.16 3.15 2.56 2.43

Honda Pilot 1.73 0.29 1.40 1.64 0.59

Chevrolet Traverse 1.73 1.33 1.50 1.29 0.18

Toyota Highlander 1.45 1.17 1.30 1.24 0.53

Gmc Acadia 1.16 0.63 1.36 1.36 0.15

Ford Flex 1.16 0.10 0.86 1.02 0.03
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Top Substitutes: Mercedes-Benz Sprinter Van

Model Raw Logit CMS I=15 CMS I=30 GMY

Ford Transit Wagon 66.67 0.58 18.18 51.72 0.04

Ram Promaster 16.67 0.08 0.00 0.00 1.76

Ford Transit Connect 8.33 0.66 22.12 0.04 0.01

Nissan Nv 8.33 0.47 15.75 30.18 6.52

Mini Cooper 0.00 0.50 0.00 0.00 0.00

Volkswagen Beetle Ii Cabrio 0.00 0.28 0.02 0.00 0.00

Audi A5 0.00 0.31 0.04 0.00 0.02

Mazda Mx-5 Miata 0.00 0.33 0.04 0.01 0.00

Audi S5 0.00 0.18 0.04 0.00 0.00

Porsche Boxster 0.00 0.18 0.80 0.01 0.00

Volkswagen Eos 0.00 0.06 0.00 0.00 0.00
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Second Stage

§ So far: Estimation of pS and psij , as well as pπ.

§ Challenge: Cannot directly calculate price elasticities and consumer welfare.

§ Solution: Follow a two-stage approach inspired by existing literature.

§ Second Stage: Recovery of price sensitivity coefficients.

§ Assumption: Utility uij “ Vij ` εij with εij as an IID Type I extreme value error term.

§ Key Equation:

Vij ´ Vi0 “

#

ln ŝij ´ ln ŝi0 if ŝij ą 0,

n.a. if ŝij “ 0.

§ Then either calibrate βp
i “

BVij

Bpj
using (1) observed own-price elasticities or

(2) observed price-cost margins.

41/57



Own-Price Elasticity Calibration

§ Approach 1: Calibrate βp
i “

BVij

Bpj
using observed own-price elasticities.

§ Sources of observed elasticities: Quasi-experiment, other studies, or simpler demand systems on

observational data.

§ Minimum Distance Estimator:

min
βp
i ă0

›

›

›

›

›

Ejj ´
pj
sj

I
ÿ

i“1

βp
i ¨ pπi ¨ ŝij ¨ p1 ´ ŝijq

›

›

›

›

›

ℓ2

§ Requirements:

§ Observe at least as many elasticities as types I.

§ Simplifies if βp
i “ βp, where a single or average elasticity identifies βp.

§ Empirical Example: Estimating βp
i using own-elasticities estimated from GMY.
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Implied Price Coefficients

Price Coefficient (βᵢᵖ)
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Model Fit

GMY
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Price-Cost Margin Calibration

§ Approach 2: Calibrate βp
i “

BVij

Bpj
using observed price-cost margins.

§ Ideally at product or firm level.

§ Construct ∆ matrix of demand derivatives, H ownership matrix.

§ P-C margin is then:

c “ p ´

˜

H d

˜

I
ÿ

i“1

πi ¨ ∆ipβ
p
i q

¸¸´1

s

§ Minimum Distance Estimator:

min
βp
i ă0

›

›

›
Cjj ´ cjpβp

i ,H, Ŝ, pπq

›

›

›

ℓ2

§ Empirical Example: Estimating βp
i using price-cost margins estimates from GMY.
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Implied Price Coefficients

Price Coefficient (βᵢᵖ)
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Model Fit
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ford focus ev
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toyota prius c
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Vending Example



Product Removal Experiments

§ Described in Conlon, Mortimer, Sarkis, Rodriguez-Valdenegro (2023)

§ Used in Conlon Mortimer (JPE 2021), not (AEJM 2013)

§ Remove best sellers by category:

§ Chocolate: Snickers and M&M Peanut

§ Cookie: Animal Cracker and Famous Amos

§ Salty: Doritos and Cheetos

§ 66 Vending machines in Downtown Chicago office buildings (around 10,000 treated individuals

per arm)
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Snickers and M&M Peanut

Product Sj DjÑk Logit RCC RCN CMS(I=2) CMS(I=3)

Outside Good 30.12 36.33 24.02 24.64 27.99 34.78 33.62

Twix Caramel 2.42 11.64 2.56 2.93 5.31 8.56 11.97

M&M Milk Chocolate 1.16 8.33 2.09 2.63 4.43 5.73 7.10

Choc Mars (Con) 1.11 6.79 1.76 2.11 3.68 1.71 2.22

Reeses Peanut Butter Cups 0.59 6.57 1.84 2.78 3.83 3.48 5.12

Butterfinger 0.50 5.22 1.22 1.71 2.49 3.75 4.20

Raisinets 1.60 3.28 1.67 2.12 3.48 2.38 2.92

Nonchoc Other (Con) 0.78 2.63 1.45 1.81 1.33 0.69 0.74

Choc Chip Famous Amos 2.05 2.48 1.74 1.79 1.23 0.00 0.21

Choc Herhsey (Con) 0.22 2.16 1.37 1.69 2.98 1.85 2.15

Planters (Con) 1.92 2.02 2.30 4.16 1.52 4.10 5.13
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Individual Estimates

Model/Rank: I = 1 I = 2 I = 3 I = 4
Weight on individual: 100.0% 81.2% 18.8% 62.8% 31.4% 5.8% 73.5% 24.1% 2.4% 0.02%

Product Logit Sj i = 1 i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 4

SA
LT

Y 
SN

AC
KS

Snyders (Con) 2.21 0.70 0.64 0.70 0.00 0.00 2.17 0.00 2.38 0.00 0.23
Cheetos 2.52 0.50 0.00 0.00 0.24 0.25 0.80 0.31 0.00 0.00 0.00

Ruffles (Con) 0.98 1.88 0.98 4.82 0.00 2.53 4.84 0.03 5.05 2.54 0.00
Dorito Nacho 2.05 0.98 0.90 1.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rold Gold (Con) 0.94 1.86 2.35 0.00 2.50 0.13 1.40 0.65 1.95 0.14 4.41
Baked (Con) 1.99 2.08 2.49 0.40 1.36 0.00 3.94 2.35 3.76 0.00 0.43

Salty Other (Con) 2.78 0.22 0.29 0.00 0.05 0.00 0.59 0.00 0.71 0.00 0.30
Sun Chip 1.81 4.76 0.00 22.96 0.00 19.29 5.19 0.09 5.71 18.70 0.00
Cheez-It 1.77 1.47 1.06 2.67 0.00 0.91 3.90 0.00 4.00 0.93 0.43

Jays (Con) 1.48 0.17 0.23 0.00 0.04 0.00 0.47 0.00 0.57 0.00 0.24
Frito 2.03 1.41 1.28 1.65 0.00 0.00 4.55 0.00 4.70 0.00 0.04

FritoLay (Con) 1.49 1.71 1.57 1.94 0.15 0.36 4.49 0.53 4.50 0.45 0.34
Smartfood 1.51 0.56 0.67 0.00 0.31 0.16 1.02 0.00 1.17 0.18 0.69

Lays 1.45 0.54 0.56 0.31 0.00 0.00 1.62 0.00 1.68 0.00 0.30
Cheetos Flamin 0.96 0.55 0.50 0.55 0.00 0.00 1.83 0.00 1.92 0.03 0.00

Dorito Blazin 1.45 1.47 0.01 6.47 0.00 5.77 1.82 0.00 2.06 5.62 0.00
Popcorn (Con) 2.06 0.51 0.63 0.00 0.61 0.33 0.34 0.22 0.54 0.36 0.80

Ritz Bits 0.51 0.16 0.22 0.00 0.17 0.00 0.23 0.00 0.32 0.03 0.26

CH
O

CO
LA

TE
 C

AN
DY

M&M Peanut 3.21 4.78 6.46 0.00 8.95 0.00 1.18 16.65 0.00 0.00 0.00
Snickers 3.53 6.08 8.00 0.00 9.75 0.70 0.00 14.91 0.00 0.11 0.13

Twix Caramel 2.29 5.19 7.32 0.00 11.03 0.00 0.00 4.04 0.00 0.00 18.60
Raisinets 1.47 1.47 2.03 0.00 2.67 0.00 0.21 2.74 0.03 0.05 2.06

M&M Milk Choc 1.80 3.63 4.90 0.00 6.47 0.00 0.67 5.31 0.36 0.04 7.24
Choc Mars (Con) 2.13 1.03 1.46 0.00 2.03 0.00 0.11 0.00 0.31 0.00 4.69
Reeses PB Cups 1.68 1.62 2.98 0.00 4.68 0.00 0.36 2.95 0.25 0.00 7.38

Butterfinger 1.10 2.72 3.21 0.80 3.69 1.13 1.67 2.06 1.73 1.16 5.62
Choc Herhsey (Con) 1.22 2.87 1.58 7.20 1.64 5.92 2.92 0.91 3.23 5.77 2.53

Model/Rank: I = 1 I = 2 I = 3 I = 4
Weight on individual: 100.0% 81.2% 18.8% 62.8% 31.4% 5.8% 73.5% 24.1% 2.4% 0.02%

Product Logit Sj i = 1 i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 4

NO
NC

HO
C.

 
CA

ND
Y Skittles Original 1.03 0.12 0.18 0.00 0.03 0.00 0.36 0.00 0.43 0.00 0.17

Nonchoc Other (Con) 1.06 0.41 0.59 0.00 0.65 0.00 0.32 0.00 0.41 0.00 1.54
Twizzlers 1.66 1.16 1.20 0.86 0.90 0.59 1.71 1.96 1.41 0.66 0.00

CO
O

KI
ES

ZAnimal Cracker 1.90 0.29 0.35 0.14 0.33 0.39 0.00 0.16 0.00 0.00 0.00
CC Fam Amos 1.58 1.57 0.00 3.66 0.04 26.42 0.00 0.23 0.00 28.73 0.00

Ruger Wafer (Con) 1.60 0.54 0.68 0.00 0.46 0.00 0.94 0.00 1.07 0.00 1.31
Grandmas CC 1.15 0.84 0.46 2.07 0.34 2.21 0.89 0.47 0.92 2.25 0.05

Rasbry Knotts 0.68 1.10 0.47 3.18 0.45 2.89 1.12 0.76 1.19 2.87 0.00
Choc Fam Amos 0.91 1.35 1.09 2.12 1.47 2.65 0.38 1.19 0.52 2.63 1.35

Nabisco (Con) 1.23 1.44 1.22 2.04 1.24 2.28 1.11 0.99 1.20 2.21 1.44

PA
ST

RY Pop-Tarts (Con) 2.42 0.27 0.39 0.00 0.34 0.00 0.36 0.00 0.46 0.00 0.87
Rice K Treats 0.85 2.25 2.64 0.80 2.06 0.16 3.22 2.78 3.03 0.24 1.59

OT
HE

R

Nature Valley (Con) 2.13 1.42 1.47 1.02 0.42 0.00 3.54 1.63 3.22 0.00 0.00
Planters (Con) 1.63 4.81 3.51 9.13 4.39 8.99 2.79 4.91 2.79 8.74 3.10
KarNuts (Con) 1.65 1.25 1.68 0.00 1.71 0.00 1.05 2.51 0.87 0.01 0.36

Farleys Fruit Snax 0.99 0.58 0.57 0.45 0.04 0.00 1.69 0.16 1.69 0.00 0.08
Cherry Fruit Snax 0.52 0.09 0.14 0.00 0.05 0.00 0.25 0.00 0.30 0.00 0.12

Cliff (Con) 3.91 1.03 1.29 0.00 1.30 0.51 0.67 0.62 0.82 0.48 2.03
Outside Good 25.34 28.58 29.75 22.86 27.43 15.42 33.28 27.87 32.77 15.06 29.27



Extensions and Conclusion



Extensions

§ What about (exogenous) price or quality changes?

Expression for DjÑk changes slightly

§ Want to add covariates?

Straightforward to run an IV regression:

log psij ´ log psi0 “ Vij ´ Vi0 “ fipxjq ´ αipj ` ξj

Test how much we lose using only a basis in fipxjq.

§ Can we estimate q0 instead of assuming it: Sj “
qj

q0`
ř

kPJ zt0u qk
? Yes.
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Other Extensions

§ Removing multiple choices at once

§ Conceptually easy: sik
1´sij´siℓ

§ Observing substitution at more consolidated level (ie: Make vs. Model)

§ A real world vending experiment with 8 product removals – here we don’t see the entire DjÑk

and must complete it.

§ Optimal Experimentation: Which product is most informative about D?

§ Not quite a theory: probably high centrality ones
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Diversion as a Network

The matrix D has some useful properties:

§ We know that Djk P r0, 1s.

§ Each row
ř

k DjÑk “ 1.

§ D looks like a transition matrix with a network structure

§ We can represented Djk as a weighted directed graph.

§ Graph algorithms already used to sort the rows/columns of D.

§ We are playing with network centrality measures.
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Network Structure of Snacks: Our Estimates
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Network Structure of Snacks: RCC
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Diversion as a Network: Work in Progress

What else can we do with this representation?

§ Can we apply graph clustering to minimize number of “cuts” to segment into distinct

markets/categories?

§ Some products (nodes) have high centrality but low share? Are these products that are likely to

provide “discipline” in merger settings?

§ Relates to measures of centrality / eigenvalues.

§ Cross elasticities are not a well-behaved network.

§ Which centrality measure (early results seem to suggest Bonacich).
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Wrapping Up

§ Things work well and move away from logit’s insufficient sparsity

§ Inference: What is asymptotic experiment?

§ Minimum Distance?

§ Taking J Ñ 8? (like Berry Linton Pakes 2004)

§ Taking number of surveyed columns/individuals in D to be complete?

§ Identification

§ We know that I “ 1 (logit) is probably identified

§ We know that I " rankpDq is probably not

§ For I ă rankpDq what else do we need to guarantee uniqueness?

(Matrix factorization problems are not always unique)

§ How much information on second choices is “enough”?

§ Explore which products matter for completing substitution patterns.
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