Estimating Preferences and Substitution Patterns from Second-Choice Data Alone

Chris Conlon (NYU Stern & NBER), Julie Holland Mortimer (University of Virginia & NBER), and Paul Sarkis (Analysis Group)

January, 2025

Motivation

The too-many-parameters problem: a complete substitution matrix has J^2 parameters, but aggregate data have only J observations. In order to predict substitution, we need to restrict consumers' choice problem (reduce dimensionality). Two options:

1. In product space, impose structure on the form of the underlying utility functions

$$\ln q_{jt} = \gamma_j + \sum_k \alpha_{jk} \ln p_{kt} + e_{jt}$$

- ▶ Examples: log log or AIDS (Deaton and Muellbauer (1980 AER))
- Often with multi-level structure so that $\alpha_{jk} = 0$ for certain pairs.

2. In characteristic space, assume substitution patterns are functions of product characteristics

$$u_{ij} = \beta_i x_j + \xi_j + \varepsilon_{ij}.$$

Mixed Logit: Explain substitution patterns using observed characteristics

- Often assume independent normal RC
- Two products with similar x_1 and high substitution \rightarrow larger σ_1 .
- Two products with similar x_2 and low substitution \rightarrow smaller σ_2 .

McFadden and Train (2000) show a mixed logit $u_{ij} = \beta_i x_j + \varepsilon_{ij}$ is fully flexible

- 1. This depends on $f(\beta_i)$ heterogeneity being nonparametric
- 2. And a sufficient set of characteristics X to explain substitution patterns.

Much work on (1), less work on (2).

Even the most flexible and data-rich random-coefficients models suffer from three main deficiencies:

- 1. Never quite enough substitution to best substitutes
- 2. Everything looks a bit too much like plain logit (substitution proportional to share)
- 3. Substitution patterns are only as good as your characteristics → if you want extreme substitution patterns you need extreme characteristics.

For competition policy enforcement:

- Agencies may have (possibly limited) data on substitution, but not much else
 - Second-choice surveys (e.g., Sainsbury's/Asda, Microsoft/Activision)
 - Customer switching or win/loss data (e.g., cell phone companies).
 - Natural or field experiments (hospital closures; product removals)
- These may not be the objects we want to use as substitution patterns.
 - Often we want to understand *ceteris paribus* responses to small changes in price.

Can we still use the information from the wrong experiment in a disciplined way?

Can we construct a low-rank approximation to substitution patterns in product space?

- ▶ Idea: avoid the too-many-problem by directly restricting the rank of substitution matrix
- ▶ Trick: re-cast substitution in terms of second-choice probabilities
- ▶ We show this leads to a convenient semi-parametric representation.

- Product characteristics do not accurately capture substitution across products.
- ▶ We lack sufficient variation in prices, other covariates, to estimate demand system.
- ▶ We need to estimate substitution patterns across all products but have data on only a subset:
 - ▶ shares of cell phone providers, but number porting/win-loss data for a subset (merging parties)
 - ▶ second-choice surveys (UK CMA: Sainsbury's/Asda, Microsoft/Activision, Amazon/Deliveroo)
 - ► aggregate market shares and a subset of second-choice data (microBLP (2004); Grieco, Murry, Yurukoglou (2024)).

Suppose we observe some aggregate shares $\mathcal{S} = [\mathcal{S}_1, \dots, \mathcal{S}_J]$, and number porting data \mathcal{D}^T

	VZ	ATT	ТМо	S	Other		
	0	?	0.30	0.30	? \	VZ	$\left\lceil 0.35 \right\rceil$
	?	0	0.45	0.15	0	ATT	0.30
$\mathcal{D}^T =$?	?	0	0.45	?	TMo ,	0.20 = S
	?	?	0.20	0	?	S	0.10
	$\backslash ? =$?	0.05	0.10	0 /	Other	$\lfloor 0.05 \rfloor$

Can we fill in the missing elements and simulate the merger?

Example of Second-Choice Survey Data, 318 Cars and Light Trucks

Second-Choice Data

Image of Camille Jordan (1838-1922)

Review of Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between products.

- \blacktriangleright Raise the price of product j and count the number of consumers who leave
- The diversion ratio $D_{j \rightarrow k}$ is the fraction of leavers who switch to the substitute k.
- A higher value of $D_{j \rightarrow k}$ indicates closer substitutes.
- Useful because it arises in the multi-product Bertrand FOC:

$$\underbrace{p_j \left(1 + 1/\epsilon_{jj}(\mathbf{p})\right)}_{\text{Marginal Revenue}} = c_j + \sum_{k \in \mathcal{J}_f \setminus j} (p_k - c_k) \cdot D_{j \to k}(\mathbf{p}).$$

 $\bullet D_{j \to k} \equiv \frac{\partial q_k}{\partial p_j} / \left| \frac{\partial q_j}{\partial p_j} \right|.$

▶ Can also write as $D_{j \to k} \equiv \frac{\epsilon_{kj}}{|\epsilon_{jj}|} \cdot \frac{q_j}{q_k}$

Diversion Ratio = fraction of consumers who switch from purchasing a product j to purchasing a substitute k (following an increase in the price of j)

Treatment not purchasing product *j*

Outcome fraction of consumers who switch from $j \rightarrow k$.

Compliers consumers who would have purchased at z_j but do not purchase at z'_j .

This admits a Wald estimator:

$$D_{j \to k}(x) = \frac{\mathbb{E}[q_k | Z = z'_j] - \mathbb{E}[q_k | Z = z_j]}{\mathbb{E}[q_j | Z = z_j] - \mathbb{E}[q_j | Z = z'_j]}$$

We also showed that most discrete-choice models yield the following representation:

$$D_{j \to k}^{z_j \to z'_j}(x) = \int_{z_j}^{z'_j} D_{j \to k,i}(x) \, w_i(z_j, z'_j, x) \, dF_i \text{ with } w_i(z_j, z'_j, x) = \frac{s_{ij}(z_j, x) - s_{ij}(z'_j, x)}{s_j(z_j, x) - s_j(z'_j, x)}$$

- ▶ Different interventions $z_j \rightarrow z'_j$ (prices, quality, characteristics, assortment) give different weights $w_i(z_j, z'_j, x)$ and thus different local average diversion ratios.
- ▶ Individual Diversion Ratios $D_{j \to k,i}(x)$ don't vary with the intervention (determined only by how *i* ranks 2nd and 3rd choices).
- That paper establishes the decomposition above and derives some properties.

A Special Case: Second Choices and Mixed Logit

If the underlying model is (any) mixed logit then:

$$D_{j \to k,i} = \frac{s_{ik}}{1 - s_{ij}}$$

And if the intervention is to eliminate j from the choice set $\mathcal J$

$$w_{ij} = \frac{s_{ij}}{s_j}$$

And let $dF_i = \pi_i$ be weight on each type *i* (Monte Carlo/Quadrature/etc):

$$D_{j \to k} = \sum_{i=1}^{I} \frac{s_{ik}}{1 - s_{ij}} \cdot \frac{\pi_i \cdot s_{ij}}{s_j}$$

Different interventions give different weights (but don't change individual $D_{j \rightarrow k,i}$).

	$w_{ij}(x) \propto$
second-choice data	$s_{ij}(x)$
price change $\frac{\partial}{\partial p_j}$	$s_{ij}(x)(1-s_{ij}(x))\cdot \alpha_i $
characteristic change $\frac{\partial}{\partial x_i}$	$s_{ij}(x)(1-s_{ij}(x))\cdot \beta_i $
small quality change $\frac{\partial}{\partial \xi_i}$	$s_{ij}(x)(1-s_{ij}(x))$
finite price change $w_i(p_j,p_j^\prime,x)$	$ s_{ij}(p'_j, x) - s_{ij}(p_j, x) $
finite quality change $w_i(\xi_j,\xi_j',x)$	$ s_{ij}(\xi'_j, x) - s_{ij}(\xi_j, x) $
willingness to pay (WTP)	$rac{s_{ij}(x)}{ lpha_i \cdot s_{i0}(x)}$

Data and the Problem of Rank Reduction

- **1**. From a parametric model: estimate demand and compute $\left[\frac{\partial q_j}{\partial p_j}(\mathbf{p})\right]^{-1} \frac{\partial q_k}{\partial p_j}(\mathbf{p})$
- 2. Farrell Shapiro (2011) hoped for info gathered "in an email" or "normal course of business"
- 3. From observed "Win-Loss" data (slightly different weights)
- 4. Randomized choice sets
 - Chris and I did this in vending machines.
 - Many examples of online search results/product listings
- 5. From surveys of second choices (e.g. stated preference)

Consumers make discrete choices from set $\mathcal J$ and we observe market shares and select second-choice probabilities

$$S_j = \mathbb{P}(\text{chooses } j \in \mathcal{J})$$

 $\mathcal{D}_{j \to k} = \mathbb{P}(\text{chooses } k \in \mathcal{J} \setminus \{j\} \mid \text{chooses } j \in \mathcal{J})$

We observe the set of (j,k) elements in \mathcal{D} which we label P_{Ω} and its complement $P_{\overline{\Omega}}$.

Wrinkle: We observe data only from a single market.

Example of Second-Choice $\mathcal{D}_{i \rightarrow k}$, 318 Cars and Light Trucks, MaritzCX

Second-Choice Data

Consider a low-rank approximation to substitution patterns using data on second choices.

- Limit the rank of \mathcal{D} directly in product space instead of controlling complexity with product characteristics and parametric restrictions on random coefficients.
- Allow for sparsity in individual shares and substitution patterns, with possibility of generating extreme patterns for top substitutes if necessary.
- If $A \sim B$ and $B \sim C$ then either $A \sim C$ or we need to increase the rank!

Setting up the Estimator

Definitions: First Choices

Utility is given by semi-parametric logit; ε_{ij} is Type I extreme value $u_{ij} = V_{ij} + \varepsilon_{ij}$ Conditional choice probabilities (s_{ij}) :

$$\mathbb{P}(u_{ij} > u_{ij'}; \text{ for all } j \neq j' \mid \mathbf{V_i}) = \frac{e^{V_{ij}}}{\sum_{j' \in \mathcal{J}} e^{V_{ij'}}} \equiv s_{ij}(\mathbf{V_i}).$$

Unconditional choice probabilities (s_j) ; integrate out over distribution of V_{ij} :

$$\mathbb{P}(u_{ij} > u_{ij'}; \text{ for all } j \neq j') = \int s_{ij}(\mathbf{V}_i) f(\mathbf{V}_i) \, \partial \mathbf{V}_i \approx \sum_{i=1}^I \pi_i \, s_{ij}(\mathbf{V}_i) \equiv s_j.$$

- $\mathbb{P}(\mathbf{V_i} = \mathbf{v_i}) = \pi_i$ so that $\pi_i \ge 0$ and $\sum_{i=1}^{I} \pi_i = 1$ (so that π constitutes a valid probability measure) for $f(\mathbf{V_i})$.
- Let S be a dim(\mathcal{J}) × I matrix with column vectors $s_i \rightarrow We$ can write $s = S \pi$.

For any (semiparametric) mixture of logits we can write the probability that individual i chooses k as their second choice given that j is their first choice as:

$$D_{j \to k} \equiv \mathbb{P}(\text{ chooses } k \in \mathcal{J} \setminus \{j\} \mid \text{ chooses } j \in \mathcal{J})$$
$$= \sum_{i=1}^{I} \pi_i \cdot \frac{s_{ik}}{1 - s_{ij}} \cdot \frac{s_{ij}}{s_j}$$

It is convenient to interpret $D_{j \to k}$ as the (j, k)th entry in the second-choice matrix $\mathbf{D}(\mathbf{S}, \pi)$.

- Individual *i*'s share for each choice given by $\mathbf{s_i} = [s_{i0}, s_{i1}, \dots, s_{iJ}]$.
- Aggregate shares by $\sum_{i=1}^{I} \pi_i \cdot \mathbf{s_i} = \mathbf{s}$.
- The matrix of individual diversion ratios is given by $\mathbf{D}_i = \mathbf{s_i} \cdot \left[\frac{1}{(1-\mathbf{s_i})}\right]^T$.

We write the $(J + 1) \times (J + 1)$ matrix of second-choice probabilities as:

$$\begin{aligned} \mathbf{D} &= \left(\sum_{i=1}^{I} \pi_i \cdot \mathbf{s_i} \cdot \left[\frac{1}{(1-\mathbf{s_i})}\right]^T \cdot \mathsf{diag}(\mathbf{s_i/s})\right)^T \\ &= \mathsf{diag}(\mathbf{s})^{-1} \cdot \left(\sum_{i=1}^{I} \pi_i \cdot \left[\frac{\mathbf{s_i}}{(1-\mathbf{s_i})}\right] \cdot \mathbf{s_i}^T\right) \end{aligned}$$

Under relatively general conditions, second-choice probabilities can be written as:

$$\mathbf{D} = \operatorname{diag}(\mathbf{s})^{-1} \cdot \left(\sum_{i=1}^{I} \pi_{i} \cdot \begin{bmatrix} & | \\ & \mathbf{s}_{\mathbf{i}} \\ & | \end{bmatrix} \cdot \begin{bmatrix} & - & \frac{\mathbf{s}_{\mathbf{i}}}{1 - \mathbf{s}_{\mathbf{i}}} & - & \end{bmatrix} \right)$$

- Each individual diversion ratio is of rank one since it is the outer product of s_i with itself (and some diagonal "weights").
- The (unrestricted) matrix of diversion ratios \mathbf{D} is $(J + 1) \times (J + 1)$.
- Logit restricts D to be of rank one. Nested logit of rank ≤ G (the number of non-singleton nests). Mixed logit to rank(D) ≤ I (but bound is likely uninformative).

 $\operatorname{Fix} \operatorname{rank}(\mathbf{D}(\mathbf{S}, \pi)) = I$, and for each choice of I solve:

$$\min_{(\mathbf{S},\pi) \ge 0} \left\| \mathcal{P}_{\Omega}(\mathcal{D} - \mathbf{D}(\mathbf{S},\pi)) \right\|_{\ell_{2}} + \lambda \left\| \mathcal{S} - \mathbf{S} \,\pi \right\|_{\ell_{2}} \text{ with } \left\| \pi \right\|_{\ell_{1}} \le 1, \quad \left\| \mathbf{s}_{\mathbf{i}} \right\|_{\ell_{1}} \le 1.$$

• Goal: estimate s_i (choice probabilities) and corresponding weights π_i (Finite Mixture)

- Not convex, but not very difficult either.
- Constraints: Choice probabilities s_{ij} sum to one, type weights π_i sum to one.
 - ℓ_1 constraints lead to sparsity.
- ▶ Idea: Control the rank by limiting *I* directly
 - Use cross validation to select # of types I and Lagrange multiplier λ .
- Matrix completion: We can construct estimates of $D(S, \pi)$ including elements of $\mathcal{P}_{\overline{\Omega}}$.

- Absent any constraints from discrete choice (and first-choice probabilities) we know the solution is similar to the Camille Jordan problem
 - ▶ Take the first *I* singular values from the SVD (as in Camille Jordan example)
- ▶ The Nuclear Norm of a matrix $\|D\|_*$ is the sum of its singular values and provides a "continuous approximation" to its rank.
 - ▶ Measure how complicated our second-choice data/parametric models are.

Comparisons

Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

$$\begin{split} \min_{\pi_i \ge 0} \sum_j \left(\mathcal{S}_j - \sum_i \pi_i \cdot \hat{s}_{ij}(\hat{\beta}_i) \right)^2 \quad \text{subject to} \quad \sum_i \pi_i = 1 \\ \hat{s}_{ij}(\hat{\beta}_i) = \frac{e^{\hat{\beta}_i x_j}}{1 + \sum_{j'} e^{\hat{\beta}_i x'_j}} \end{split}$$

- Draw $\beta_i \sim G(\beta_i)$ from a prior distribution.
- Solved in characteristic space with a semi-parametric form for $f(\beta_i)$.
- Often produces very sparse models $\pi_i = 0$ (for 950/1000 simulated consumers).
- > Data requirement: characteristics that vary across markets.
- Fix grid of $\hat{\beta}_i$ (and thus \hat{s}_{ij}); search over π_i .

See Heiss, Hetzenecker, Osterhaus (JoE 2022).

- Cut data into bins (zip, income, age, gender)
- Observe shares (hospital demand) within each bin $s_{g(i),j}$
- A separate plain logit for each bin with only ξ_j as the common parameter.

$$s_{g(i),j} = \frac{e^{\beta_g x_j + \xi_j}}{1 + \sum_{j'} e^{\beta_g x_{j'} + \xi_{j'}}}, \quad D_{j \to k,i} = \frac{s_{g(i),k}}{1 - s_{g(i),j}}$$

- ▶ Use second choices from hospital closures (natural disasters) to compare models.
- ▶ Requires individual data grouped into bins, plus characteristics.
- Fix π_i 's, search for β_g (and thus $s_{g(i)}$).

Most similar to what we're doing conceptually.

- Estimate separate β_i for each class.
- Estimate proportion of each class π_i .
- Estimating finite mixtures is tricky and usually requires EM.

$$s_k(\pi,\beta) = \sum_{i=1}^{I} \pi_i \cdot \left(\frac{e^{\beta_i x_{ij} + \xi_j}}{1 + \sum_k e^{\beta_i x_{ik} + \xi_k}}\right)$$

► We work in product space (no need for characteristics), using the summing-up constraints to enforce that the model is consistent with discrete choice.

Monte Carlo

- Fit (i) nested logit, (ii) RC logit to data on vending machines (Conlon and Mortimer JPE, 2021).
- Generate fake sales and second-choices from those parameter estimates.
 - J = 45 products; T = 250 markets; with 30 randomly selected products in each. Market size M = 1000 per market. Nesting parameter is $\rho = 0.25$.
 - ▶ Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.
- Estimate a variety of misspecified parametric models: RC on nest dummies, RC on characteristics (Salt, Sugar, Nut Content), and our semiparametric estimator.
 - Include $m \ll J$ columns of $\mathcal{D}_{j \to k}$ as extra moments.
- Compare out-of-sample predicted second-choice probabilities.
 - ► MAD: Median $(|\mathcal{D}_{j\to k} \hat{D}_{j\to k}|)$ for $(j,k) \in P_{\overline{\Omega}}$ (Validation).

• RMSE:
$$\sqrt{\frac{1}{n}\sum_{(j,k)\in P_{\overline{\Omega}}\}} |\mathcal{D}_{j\to k} - \hat{D}_{j\to k}|^2}$$

Monte Carlo: DGP is Nested Logit

Cross-validation Results - Nested Logit DGP

29/57

Monte Carlo: DGP is RC on chars (Interpolation!)

Cross-validation Results - RC Logit DGP

30/57

Application to Autos Data

- Subset of data from Grieco, Murry and Yurukoglu (QJE 2023).
- Focus on one year of sales from 2015
 - ▶ Aggregate sales observed at the model-year level from Ward's Automotive.
 - Second choices from MaritzCX survey (53,328 purchases)
 - In total, J = 318 products.
- Same Goal: Predict unobserved second-choice data without characteristics.
- How: Split sample into P_{Ω} and $P_{\overline{\Omega}}$

MaritzCX Survey data (318 Cars and Light Trucks)

Second-Choice Data

Cross Validation: Model Selection

In-Sample Performance

34/57

Analysis of Consumer Weights

Consumer Weights Concentration

Comparison of Implied Diversion

Data

GMY

CMS (I=15)

Profiles of Types (Rank 15)

Top Substitutes: Ford F-Series

Model	Raw	Logit	CMS I=15	CMS I=30	GMY	
Ram Pickup	24.59	0.88	21.46	22.23	19.40	
Gmc Sierra	20.29	0.61	14.97	21.92	17.27	
Chevrolet Silverado	15.62	0.78	13.41	19.63	33.62	
Toyota Tundra	12.98	0.55	16.32	12.79	2.29	
Toyota Tacoma	6.31	0.76	3.39	3.13	2.83	
Chevrolet Colorado	4.64	0.63	3.22	2.86	2.87	
Gmc Canyon	2.30	0.30	0.76	1.38	1.02	
Nissan Frontier	1.63	0.43	0.92	1.69	0.61	
Jeep Wrangler	1.59	0.69	1.33	0.94	0.06	
Nissan Titan	0.70	0.05	1.18	1.17	0.18	
Ford Explorer	0.63	0.38	0.16	0.14	0.71	
						1

Top Substitutes: Honda Odyssey

Model	Raw	Logit	CMS I=15	CMS I=30	GMY
Toyota Sienna	44.51	0.50	41.02	41.43	28.34
Chrysler Town & Country	11.27	0.44	13.70	13.66	6.90
Dodge Caravan	8.67	0.61	12.11	12.90	7.04
Kia Sedona	8.38	0.18	7.22	7.22	7.59
Mazda Mazda5	2.02	0.19	0.07	0.00	0.01
Nissan Quest	2.02	0.16	3.15	2.56	2.43
Honda Pilot	1.73	0.29	1.40	1.64	0.59
Chevrolet Traverse	1.73	1.33	1.50	1.29	0.18
Toyota Highlander	1.45	1.17	1.30	1.24	0.53
Gmc Acadia	1.16	0.63	1.36	1.36	0.15
Ford Flex	1.16	0.10	0.86	1.02	0.03

Top Substitutes: Mercedes-Benz Sprinter Van

Model	Raw	Logit	CMS I=15	CMS I=30	GMY
Ford Transit Wagon	66.67	0.58	18.18	51.72	0.04
Ram Promaster	16.67	0.08	0.00	0.00	1.76
Ford Transit Connect	8.33	0.66	22.12	0.04	0.01
Nissan Nv	8.33	0.47	15.75	30.18	6.52
Mini Cooper	0.00	0.50	0.00	0.00	0.00
Volkswagen Beetle li Cabrio	0.00	0.28	0.02	0.00	0.00
Audi A5	0.00	0.31	0.04	0.00	0.02
Mazda Mx-5 Miata	0.00	0.33	0.04	0.01	0.00
Audi S5	0.00	0.18	0.04	0.00	0.00
Porsche Boxster	0.00	0.18	0.80	0.01	0.00
Volkswagen Eos	0.00	0.06	0.00	0.00	0.00

Second Stage

- So far: Estimation of $\widehat{\mathbf{S}}$ and \widehat{s}_{ij} , as well as $\widehat{\pi}$.
- Challenge: Cannot directly calculate price elasticities and consumer welfare.
- ▶ Solution: Follow a two-stage approach inspired by existing literature.
- Second Stage: Recovery of price sensitivity coefficients.
 - Assumption: Utility $u_{ij} = V_{ij} + \varepsilon_{ij}$ with ε_{ij} as an IID Type I extreme value error term.
 - Key Equation:

$$V_{ij} - V_{i0} = \begin{cases} \ln \hat{s}_{ij} - \ln \hat{s}_{i0} & \text{if } \hat{s}_{ij} > 0, \\ \text{n.a.} & \text{if } \hat{s}_{ij} = 0. \end{cases}$$

Then either calibrate β^p_i = ∂V_{ij}/∂p_j using (1) observed own-price elasticities or
 (2) observed price-cost margins.

Own-Price Elasticity Calibration

- Approach 1: Calibrate $\beta_i^p = \frac{\partial V_{ij}}{\partial p_i}$ using observed own-price elasticities.
 - Sources of observed elasticities: Quasi-experiment, other studies, or simpler demand systems on observational data.
- Minimum Distance Estimator:

$$\min_{\beta_i^p < 0} \left\| \mathcal{E}_{jj} - \frac{p_j}{s_j} \sum_{i=1}^{I} \beta_i^p \cdot \hat{\pi}_i \cdot \hat{s}_{ij} \cdot (1 - \hat{s}_{ij}) \right\|_{\ell_2}$$

- Requirements:
 - Observe at least as many elasticities as types I.
 - Simplifies if $\beta_i^p = \beta^p$, where a single or average elasticity identifies β^p .
- Empirical Example: Estimating β_i^p using own-elasticities estimated from GMY.

Implied Price Coefficients

43/57

Model Fit

44/57

Price-Cost Margin Calibration

- Approach 2: Calibrate $\beta_i^p = \frac{\partial V_{ij}}{\partial p_i}$ using observed price-cost margins.
 - Ideally at product or firm level.
- Construct Δ matrix of demand derivatives, ${\cal H}$ ownership matrix.
- P-C margin is then:

$$\mathbf{c} = \mathbf{p} - \left(\mathcal{H} \odot \left(\sum_{i=1}^{I} \pi_i \cdot \Delta_i(\beta_i^p)\right)\right)^{-1} \mathbf{s}$$

Minimum Distance Estimator:

$$\min_{\substack{\beta_i^p < 0}} \left\| \mathcal{C}_{jj} - c_j(\beta_i^p, \mathcal{H}, \hat{S}, \hat{\pi}) \right\|_{\ell_2}$$

• Empirical Example: Estimating β_i^p using price-cost margins estimates from GMY.

Implied Price Coefficients

Estimated Price coefficients (CMS I=15),

Model Fit

47/57

Vending Example

- ▶ Described in Conlon, Mortimer, Sarkis, Rodriguez-Valdenegro (2023)
- ▶ Used in Conlon Mortimer (JPE 2021), not (AEJM 2013)
- Remove best sellers by category:
 - Chocolate: Snickers and M&M Peanut
 - Cookie: Animal Cracker and Famous Amos
 - Salty: Doritos and Cheetos
- ▶ 66 Vending machines in Downtown Chicago office buildings (around 10,000 treated individuals per arm)

Product	\mathcal{S}_{j}	$\mathcal{D}_{j \to k}$	Logit	RCC	RCN	CMS(I=2)	CMS(I=3)
Outside Good	30.12	36.33	24.02	24.64	27.99	34.78	33.62
Twix Caramel	2.42	11.64	2.56	2.93	5.31	8.56	11.97
M&M Milk Chocolate	1.16	8.33	2.09	2.63	4.43	5.73	7.10
Choc Mars (Con)	1.11	6.79	1.76	2.11	3.68	1.71	2.22
Reeses Peanut Butter Cups	0.59	6.57	1.84	2.78	3.83	3.48	5.12
Butterfinger	0.50	5.22	1.22	1.71	2.49	3.75	4.20
Raisinets	1.60	3.28	1.67	2.12	3.48	2.38	2.92
Nonchoc Other (Con)	0.78	2.63	1.45	1.81	1.33	0.69	0.74
Choc Chip Famous Amos	2.05	2.48	1.74	1.79	1.23	0.00	0.21
Choc Herhsey (Con)	0.22	2.16	1.37	1.69	2.98	1.85	2.15
Planters (Con)	1.92	2.02	2.30	4.16	1.52	4.10	5.13

Individual Estimates

	Mod	del/Rank:	l = 1	1=	2		I = 3		1 = 4			
	Weight on ir	ndividual:	100.0%	81.2%	18.8%	62.8%	31.4%	5.8%	73.5%	24.1%	2.4%	0.02%
	Product	Logit Sj	i = 1	i = 1	i = 2	i = 1	i = 2	i = 3	i = 1	i = 2	i = 3	i = 4
	Snyders (Con)	2.21	0.70	0.64	0.70	0.00	0.00	2.17	0.00	2.38	0.00	0.23
	Cheetos	2.52	0.50	0.00	0.00	0.24	0.25	0.80	0.31	0.00	0.00	0.00
	Ruffles (Con)	0.98	1.88	0.98	4.82	0.00	2.53	4.84	0.03	5.05	2.54	0.00
	Dorito Nacho	2.05	0.98	0.90	1.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Rold Gold (Con)	0.94	1.86	2.35	0.00	2.50	0.13	1.40	0.65	1.95	0.14	4.41
	Baked (Con)	1.99	2.08	2.49	0.40	1.36	0.00	3.94	2.35	3.76	0.00	0.43
	Salty Other (Con)	2.78	0.22	0.29	0.00	0.05	0.00	0.59	0.00	0.71	0.00	0.30
S	Sun Chip	1.81	4.76	0.00	22.96	0.00	19.29	5.19	0.09	5.71	18.70	0.00
MAC	Cheez-It	1.77	1.47	1.06	2.67	0.00	0.91	3.90	0.00	4.00	0.93	0.43
LTV S	Jays (Con)	1.48	0.17	0.23	0.00	0.04	0.00	0.47	0.00	0.57	0.00	0.24
3	Frito	2.03	1.41	1.28	1.65	0.00	0.00	4.55	0.00	4.70	0.00	0.04
	FritoLay (Con)	1.49	1.71	1.57	1.94	0.15	0.36	4.49	0.53	4.50	0.45	0.34
	Smartfood	1.51	0.56	0.67	0.00	0.31	0.16	1.02	0.00	1.17	0.18	0.69
	Lays	1.45	0.54	0.56	0.31	0.00	0.00	1.62	0.00	1.68	0.00	0.30
	Cheetos Flamin	0.96	0.55	0.50	0.55	0.00	0.00	1.83	0.00	1.92	0.03	0.00
	Dorito Blazin	1.45	1.47	0.01	6.47	0.00	5.77	1.82	0.00	2.06	5.62	0.00
	Popcorn (Con)	2.06	0.51	0.63	0.00	0.61	0.33	0.34	0.22	0.54	0.36	0.80
	Ritz Bits	0.51	0.16	0.22	0.00	0.17	0.00	0.23	0.00	0.32	0.03	0.26
	M&M Peanut	3.21	4.78	6.46	0.00	8.95	0.00	1.18	16.65	0.00	0.00	0.00
	Snickers	3.53	6.08	8.00	0.00	9.75	0.70	0.00	14.91	0.00	0.11	0.13
≥	Twix Caramel	2.29	5.19	7.32	0.00	11.03	0.00	0.00	4.04	0.00	0.00	18.60
CAN	Raisinets	1.47	1.47	2.03	0.00	2.67	0.00	0.21	2.74	0.03	0.05	2.06
LATE	M&M Milk Choc	1.80	3.63	4.90	0.00	6.47	0.00	0.67	5.31	0.36	0.04	7.24
8	Choc Mars (Con)	2.13	1.03	1.46	0.00	2.03	0.00	0.11	0.00	0.31	0.00	4.69
÷	Reeses PB Cups	1.68	1.62	2.98	0.00	4.68	0.00	0.36	2.95	0.25	0.00	7.38
	Butterfinger	1.10	2.72	3.21	0.80	3.69	1.13	1.67	2.06	1.73	1.16	5.62
	Choc Herhsey (Con)	1.22	2.87	1.58	7.20	1.64	5.92	2.92	0.91	3.23	5.77	2.53

	Model/Rank:		I = 1	1=	2		I = 3			1 = 4				
	Weight on ir	ndividual:	100.0%	81.2%	18.8%	62.8%	31.4%	5.8%	73.5%	24.1%	2.4%	0.02%		
	Product	Logit Sj	i = 1	i = 1	i = 2	i = 1	i = 2	i = 3	i = 1	i = 2	i = 3	i = 4		
OTHER PASTRY COOKIES NOWCHOC COOKIES	Skittles Original	1.03	0.12	0.18	0.00	0.03	0.00	0.36	0.00	0.43	0.00	0.17		
AND'	Nonchoc Other (Con)	1.06	0.41	0.59	0.00	0.65	0.00	0.32	0.00	0.41	0.00	1.54		
NOI	Twizzlers	1.66	1.16	1.20	0.86	0.90	0.59	1.71	1.96	1.41	0.66	0.00		
	ZAnimal Cracker	1.90	0.29	0.35	0.14	0.33	0.39	0.00	0.16	0.00	0.00	0.00		
	CC Fam Amos	1.58	1.57	0.00	3.66	0.04	26.42	0.00	0.23	0.00	28.73	0.00		
8	Ruger Wafer (Con)	1.60	0.54	0.68	0.00	0.46	0.00	0.94	0.00	1.07	0.00	1.31		
OKI	Grandmas CC	1.15	0.84	0.46	2.07	0.34	2.21	0.89	0.47	0.92	2.25	0.05		
8	Rasbry Knotts	0.68	1.10	0.47	3.18	0.45	2.89	1.12	0.76	1.19	2.87	0.00		
	Choc Fam Amos	0.91	1.35	1.09	2.12	1.47	2.65	0.38	1.19	0.52	2.63	1.35		
	Nabisco (Con)	1.23	1.44	1.22	2.04	1.24	2.28	1.11	0.99	1.20	2.21	1.44		
TRY	Pop-Tarts (Con)	2.42	0.27	0.39	0.00	0.34	0.00	0.36	0.00	0.46	0.00	0.87		
BAS	Rice K Treats	0.85	2.25	2.64	0.80	2.06	0.16	3.22	2.78	3.03	0.24	1.59		
	Nature Valley (Con)	2.13	1.42	1.47	1.02	0.42	0.00	3.54	1.63	3.22	0.00	0.00		
	Planters (Con)	1.63	4.81	3.51	9.13	4.39	8.99	2.79	4.91	2.79	8.74	3.10		
8	KarNuts (Con)	1.65	1.25	1.68	0.00	1.71	0.00	1.05	2.51	0.87	0.01	0.36		
OTP	Farleys Fruit Snax	0.99	0.58	0.57	0.45	0.04	0.00	1.69	0.16	1.69	0.00	0.08		
	Cherry Fruit Snax	0.52	0.09	0.14	0.00	0.05	0.00	0.25	0.00	0.30	0.00	0.12		
	Cliff (Con)	3.91	1.03	1.29	0.00	1.30	0.51	0.67	0.62	0.82	0.48	2.03		
	Outside Good	25.34	28.58	29.75	22.86	27.43	15.42	33.28	27.87	32.77	15.06	29.27		

Extensions and Conclusion

- ► What about (exogenous) price or quality changes? Expression for D_{j→k} changes slightly
- Want to add covariates?
 Straightforward to run an IV regression:

$$\log \hat{s}_{ij} - \log \hat{s}_{i0} = V_{ij} - V_{i0} = f_i(x_j) - \alpha_i p_j + \xi_j$$

Test how much we lose using only a basis in $f_i(x_j)$.

► Can we estimate q_0 instead of assuming it: $S_j = \frac{q_j}{q_0 + \sum_{k \in \mathcal{J} \setminus \{0\}} q_k}$? Yes.

- Removing multiple choices at once
 - Conceptually easy: $\frac{s_{ik}}{1-s_{ij}-s_{i\ell}}$
- Observing substitution at more consolidated level (ie: Make vs. Model)
- A real world vending experiment with 8 product removals here we don't see the entire $\mathcal{D}_{j \to k}$ and must complete it.
- ▶ Optimal Experimentation: Which product is most informative about *D*?
 - Not quite a theory: probably high centrality ones

The matrix $\ensuremath{\mathcal{D}}$ has some useful properties:

- We know that $\mathcal{D}_{jk} \in [0, 1]$.
- Each row $\sum_k \mathcal{D}_{j \to k} = 1$.
- $\blacktriangleright \ \mathcal{D}$ looks like a transition matrix with a network structure
- We can represented \mathcal{D}_{jk} as a weighted directed graph.
- \blacktriangleright Graph algorithms already used to sort the rows/columns of $\mathcal{D}.$
- We are playing with **network centrality** measures.

Network Structure of Snacks: Our Estimates

Diversion Network b/w Vending products, CMS (I=3), edges = diversion > 4.5%

Network Structure of Snacks: RCC

Diversion Network b/w Vending products, RCC, edges = diversion > 4.5%

What else can we do with this representation?

- Can we apply graph clustering to minimize number of "cuts" to segment into distinct markets/categories?
- Some products (nodes) have high centrality but low share? Are these products that are likely to provide "discipline" in merger settings?
 - Relates to measures of centrality / eigenvalues.
 - Cross elasticities are not a well-behaved network.
- ▶ Which centrality measure (early results seem to suggest Bonacich).

Wrapping Up

- > Things work well and move away from logit's insufficient sparsity
- Inference: What is asymptotic experiment?
 - Minimum Distance?
 - Taking $J \rightarrow \infty$? (like Berry Linton Pakes 2004)
 - \blacktriangleright Taking number of surveyed columns/individuals in ${\cal D}$ to be complete?
- Identification
 - We know that I = 1 (logit) is probably identified
 - We know that $I \gg rank(\mathcal{D})$ is probably not
 - For I < rank(D) what else do we need to guarantee uniqueness? (Matrix factorization problems are not always unique)
- How much information on second choices is "enough"?
- Explore which products matter for completing substitution patterns.